arXiv:2509.21625v1 [cs.SD] 25 Sep 2025

GUIDING AUDIO EDITING WITH AUDIO
LLANGUAGE MODEL

Zitong Lan Yiduo Hao Mingmin Zhao
University of Pennsylvania

ABSTRACT

Audio editing plays a central role in VR/AR immersion, virtual conferencing,
sound design, and other interactive media. However, recent generative audio editing
models depend on template-like instruction formats and are restricted to mono-
channel audio. These models fail to deal with declarative audio editing, where
the user declares what the desired outcome should be, while leaving the details
of editing operations to the system. We introduce SmartDJ, a novel framework
for stereo audio editing that combines the reasoning capability of audio language
models with the generative power of latent diffusion. Given a high-level instruction,
SmartDJ decomposes it into a sequence of atomic edit operations, such as adding,
removing, or spatially relocating events. These operations are then executed by a
diffusion model trained to manipulate stereo audio. To support this, we design a
data synthesis pipeline that produces paired examples of high-level instructions,
atomic edit operations, and audios before and after each edit operation. Experiments
demonstrate that SmartDJ achieves superior perceptual quality, spatial realism, and
semantic alignment compared to prior audio editing methods. Demos are available
at project page.

1 INTRODUCTION

Imagine you recorded a forest on a rainy day and wanted to transform it into the soundscape of a
sunny forest. Achieving this transformation requires many edits: removing mismatched elements like
rainfall and adding new effects such as bright leaf rustling. Traditionally, audio editing is a procedural
process: the user specifies how to achieve the goal, step by step, by removing rain, layering new
samples, adjusting gain, and so on. Yet in practice, users would prefer just to issue a single, high-level
instruction, e.g., “make this sound like a sunny day”, and rely on an intelligent audio editor to decide
what edits are needed. We call this declarative editing: the user declares what the desired outcome
should be, while leaving the how, i.e., the sequence of operations, to the system. Such a declarative
paradigm would unlock a wide range of applications in VR/AR, gaming, cinematic post-production,
and beyond, where designing and modifying audio scenes is central to immersive experiences.

Recent advances in deep generative models have opened exciting possibilities for text-to-audio
generation and language-driven editing |Evans et al.| (2024aib); Hai et al.|(2024); | Heydari et al.| (2024));
Huang et al.| (2023a)); [Liu et al.| (2023a; [2024a); Jia et al.| (2024)); Liang et al.| (2024); Wang et al.
(2023); (Xu et al.| (2024). However, existing audio editors remain limited in two key aspects. First,
they rely on templated instructions such as “add the sound of birds” or “remove the sound of rain”,
which restricts their ability to handle high-level or abstract user instructions. Second, they operate
only on monaural (single-channel) audio, discarding spatial features such as interaural time and level
differences, which are primary cues for spatial hearing. Without these cues, even semantically correct
edits sound flat and fail to deliver immersive experiences.

In contrast, declarative editing requires an editor to bridge from high-level goals to detailed operations
automatically. When a user issues instructions such as “place me in a concert hall” or “have this
audio in a library”, the system must reason about which sounds to remove, which to preserve, how
to adjust loudness, when to introduce new events, and how to shift spatial position. Current audio
editors based on diffusion models cannot achieve this, as they lack the reasoning capacity to interpret
these high-level instructions. On the other hand, language models alone are also insufficient: while
they can parse the user’s request, they lack grounding in the audio itself, making it impossible to
decide which sound elements should be suppressed, emphasized, or retained. This gap highlights
the need for a framework that jointly reasons over language and audio, combining natural-language
instruction understanding with audio-aware analysis and editing.

https://zitonglan.github.io/project/smartdj/smartdj.html
https://arxiv.org/abs/2509.21625v1

“Have this audio in a sunny forest”
l Step 1: Remove raining

e“o

,, ALM Step 2: Add tree leaves bustling

oy (o

Audio events:
Cat meowing, Raining g FEmSs Step n: Add bird chirping
I' , JStep 1 JStepn
|| LDM LDM ool
igi i - - > = e
Original stereo audio B . if+-1]1
g SmartDJ Editor Editor |

Edited stereo audio

Figure 1: SmartDJ has an Audio Language Model (ALM) that acts as an edit planner to decompose
the instructions into atomic steps, guiding the Latent Diffusion Model (LDM) editor to produce
high-quality edited audio.

In this work, we present SmartD]J, the first framework for declarative audio editing by introducing
Audio Language Models (ALM) into the audio editing loop. This approach is motivated by the recent
success of MLLMs in multimodal grounding and reasoning |Chu et al.| (2023); |Ghosh et al.|(2025a));
Kong et al.|(2024a)); |Liu et al.[(2023b)); |L1 et al.|(2023a);|Zheng et al.[(2025). As illustrate in Fig. E], our
key idea is to let the ALM act as a planner: it perceives the original audio while interpreting the user’s
high-level instruction and decomposes it into a sequence of atomic edit operations, such as adding or
removing a sound, shifting direction, or adjusting volume, etc. These atomic edit operations are then
executed sequentially by a conditional Latent Diffusion Model (LDM) as an audio editor, realizing
the user’s high-level goal. This separation of planning and editing transforms audio editing from a
procedural task into a declarative one. Moreover, because the intermediate representation is expressed
in natural language, users can easily inspect, refine, or override the planned edits interactively.

Training a system to perform declarative editing introduces a fundamental challenge: it requires
paired examples of high-level instructions, their corresponding atomic edit sequences, and the before-
and-after edited audio. Such data is rarely available, as natural soundscapes are complex and difficult
to edit at scale. To address this, we construct a scalable data generation pipeline that provides
controllable audio scenes. Each scene is assembled from independently parameterized sound events
with attributes such as direction and loudness. Within this pipeline, an off-the-shelf LLM acts as the
designer, producing diverse high-level editing instructions and the corresponding atomic operations.
Audio signal processing then serves as the composer, rendering each operation by adjusting or mixing
sound events to produce the corresponding audio after every edit. Together, this designer—composer
pipeline mirrors the planner—editor structure of our model. It produces a large-scale corpus of realistic
editing operations, providing the supervision needed to train and evaluate our model.

Experimental results show that SmartDJ delivers superior editing quality and better alignment with
high-level user instructions from both subjective metrics and human evaluations. Our LDM also
outperforms existing baselines for audio editing. Ablation studies show that our ALM can effectively
reason about and decompose high-level user instructions into a sequence of editing actions.

In summary, our main contributions are as follows:

* We introduce SmartDJ, the first stereo audio editor capable of interpreting high-level user instruc-
tions with an ALM and executing them as precise atomic edit operations through an LDM.

* We introduce the first scalable pipeline for generating editable stereo audio scenes, combining
high-level instructions with controllable events to enable reasoning-based audio editors.

* We conduct extensive experiments and user studies with different baseline methods and demonstrate
that SmartDJ achieves the highest editing quality for both objective and subjective metrics.

2 RELATED WORK

Audio generation and editing. With the current advances in deep generative models, lots of methods
have achieved high-quality audio generation from text and multi-modal conditions |Chen et al.| (2024);
Evans et al.| (2024a); Hai et al.| (2024); [Huang et al.| (2023a)); [Liu et al.|(2023a; |20244a); |Wang et al.
(2023)). Recently, spatial audio generation has attracted more attention [Evans et al.|(20244a); Heydari
et al.| (2024); |Liu et al.| (2025)); [Sun et al.|(2024), providing more realistic and immersive listening
experiences. Parallel to these generation efforts, text-guided audio editing also emerged as a powerful
tool for modifying existing audio recordings. Audit/Wang et al.|(2023) introduced an end-to-end
diffusion model conditioned on both the input audio and simple, structured text commands, but its
reliance on fixed editing templates limits flexibility to interpret high-level user prompts. WavCraft

Liang et al.|(2024) leverages GPT-api to parse user instructions, yet it expects fully specified prompts
(e.g., "extract baby crying from the audio" or "apply a low-pass filter to the wave crashing sound and
add it back"). Some recent work Jia et al.[(2024); Manor & Michaeli (2024); |Xu et al.|(2024)) adapts
image-editing techniques (e.g., DDPM inversion, Null-text inversions, attention map manipulation) to
monaural audio. They require precise token-level swapping or deletion to complete the edit, struggle
with high-level instructions. Besides, they offer no support for stereo audio editing that are important
in many applications [Lan et al.|(2024); Xu et al.|(2025)); Liang et al|(2025)). To summarize, none of
the existing work can interpret high-level user input to complete the audio editing. Besides, existing
frameworks remain confined to monaural outputs and are ill-suited for immersive spatial scenarios.

Multimodal Large Language Model. Large language models (LLMs) are remarkable in natural
language processing tasks. Provided with multimodal inputs, such as images and audio, multimodal
LLMs (MLLMs) et al.| (2022); Liu et al.| (2023b); |L1 et al.| (2023a); [Team|(2025); |Kong et al.| (2024b));
Ghosh et al.| (2025b) demonstrate exceptional performance across a wide range of downstream
visual-language and audio-language tasks. In the vision domain, LLaVA |Liu et al.|(2023b) enables
LLM:s to achieve general-purpose visual and language understanding by fine-tuning on a multimodal
instruction-following dataset. In the audio domain, LTU |Gong et al.|(2023) and Audio Flamingo[Kong
et al.[(2024b); Ghosh et al.|(2025b) enhance LLMs with the ability to process non-speech sounds and
non-verbal speech. With strong capabilities of MLLMs, researchers introduced them into the field
of content generation Wu et al.|(2024c;b)); Koh et al.|(2023)); [Fu et al.|(2024)); Huang et al.| (2023b)),
grounding |Lai et al.| (2024); Hao et al.| (2024); Cheng et al.|(2024), world modeling |Wu et al.|(2024a));
Ge et al.| (2024); Mai et al.| (2024), and embodied Al |Driess et al.|(2023)); |Li et al.| (2023b)); Mu et al.
(2023)). In image generation and editing, various works |[Koh et al.| (2023); |Fu et al.| (2024); Huang
et al.|(2023b) use VLM to guide diffusion models. However, in the audio domain, existing methods
have not exploited the reasoning capabilities of audio language models.

Diffusion-based Image Editing. In contrast to text-to-image generation, image editing focuses on
altering specific elements or attributes within an image while preserving the contents of the remaining
image. Diffusion models have been widely used in image editing tasks |[Couairon et al.| (2022)); Hertz
et al.| (2022)); Hui et al.| (2024)) by altering the inversion process, which produces a latent representation
that can reconstruct the image through the generative process. SDEditMeng et al.| (2022)) first adds
noise to the source image, and then subsequently denoises the image through the SDE to produce the
target image. P2P Hertz et al.| (2022)) adjusts the cross-attention features according to the difference
between the source and target captions to generate the target images. Based on this, IP2P Brooks
et al.[(2023)) finetuned a diffusion model on edit image triplets to enable image editing with simple
natural language instructions. Following works|Geng et al.[(2023)); [Hui et al.| (2024)) further scale up
the dataset to support more capable and generalized models. Furthermore, [Fu et al.|(2024); |Huang
et al.|(2023b)) use vision-language models to guide diffusion models for image editing tasks.

3 METHOD

In this section, we first define the task and notations. We then introduce our proposed framework
SmartDJ that combines an Audio Language Model for interpreting high-level editing instructions
with a diffusion model for executing sequential audio edits. Finally, we describe a scalable data
generation pipeline powered by LLMs to support supervised training and evaluation.

3.1 PROBLEM DEFINITION AND NOTATIONS

Let ay denote the original audio waveform, which contains multiple audio events (e.g., cat meowing,
rainfall), as shown in Fig. [l We define a high-level editing instruction P as a natural language
description of a desired transformation of the overall audio scene. Such instructions are typically
declarative: they specify what the desired outcome should be (e.g., “make it sound like a quiet
morning in a sunny forest” or “transform this into an indoor library setting”), but do not explicitly
prescribe the individual operations. Since P is a high-level instruction, it must be decomposed into a
detailed sequence of atomic editing steps S = {s1, Sa,. . ., Sn }, where each step s; either modifies an
existing audio event in ag or introduces a new event needed to fulfill P. We denote a;(i=1,2,...,n)
as the intermediate audio after applying step s;, where ag is the original input and a,, is the final
edited audio.

Specifically, each step s; either modifies an existing audio event or introduces a new event required
to satisfy P. The atomic editing operations considered in this work are:

* Add: Mix a new sound event into the scene (e.g., inject bird chirps).

* Remove: Delete an existing sound event (e.g., remove car engine noise).

* Extract: Isolate a particular sound event from the original audio while removing others.
* Turn volume up/down: Adjust the volume of a specific event.

* Change direction: Modify the spatial location of an event.

The goal of the editing is to produce a target edited audio clip a,, by applying the sequence of
edits S to ag. Importantly, this editing formulation must preclude shortcut solutions that ignore the
original input (e.g., re-generating an entirely new clip from scratch). Instead, the edited audio a,,
must preserve all unedited content from ag while achieving the requested audio scene transformation.
Please refer to Appendix [A.2]for more details.

3.2 SMARTDJ FRAMEWORK

SmartDJ consists of an Audio Language Model (ALM) and a Latent Diffusion Model (LDM).
We leverage the ALM as a planner to interpret high-level instructions and generate a sequence of
atomic editing steps. The LDM editor then executes these

¢ - . . High-level i i
steps sequentially to transform the original audio. As illus- fghvlevel nstruction

trated in Fig. [2] the ALM takes the original audio a¢ and '

the high-level editing instruction P as input, and outputs a Original audio | LM

sequence of atomic editing steps S = {s1, 82, ..., S }-

These editing steps are then executed sequentially by Atomic edit steps S

the LDM, producing intermediate results a1, as, ..., an, Step 1 Step 2 Stepn
where a,, is the final edited audio. The overall process is ! 52 5n
formulated as: ! ay ! ay Gy !

ao—» LDM —>» LDM —» - —1> LDM —ap,
{51,82,...,8n } =ALM(aq; P) (D
a;=LDM(a;—1;8;),i=1,2,..n (2)

Figure 2: SmartDJ framework overview

3.3 AUDIO LANGUAGE MODEL FOR ATOMIC EDITING STEPS GENERATION

The Audio Language Model (ALM) takes as input the original audio clip and the high-level editing
instruction and generates a sequence of atomic editing steps. As shown at the top of Fig. [3] we
first encode ag using a pretrained audio encoder (i.e., CLAP Wu et al.| (2023))) to obtain an audio
embedding z,, which is injected into the ALM via adapter layers. In parallel, the instruction P is
tokenized and encoded as a sequence of embeddings (p1,pa,- .., pr), which serve as the textual
context for the ALM.

Our ALM is trained in an auto-regressive manner to generate the token sequence corresponding to
the atomic editing steps S, by minimizing the following objective:
l
Lav = — Y 1og Py(ri=r¢ | za,"1:40-1,P1:k), 3
t=1

where r and r/ are the ground truth and predicted text tokens for the atomic editing steps S, [is the
length of the tokens, and 6 denotes the model parameters. To enable efficient fine-tuning, we freeze
the parameters of the CLAP audio encoder, apply Low-Rank Adaptation (LoRA)|Hu et al.| (2022) to
a small subset of the LLM layersGhosh et al.| (2025b), and fully fine-tune the adapter layers.

Separate training. We train the ALM and LDM as independent modules rather than end-to-end.
This enables human-in-the-loop editing, where users can easily intervene at the level of generated
natural-language-based atomic steps before LDM editor inference. Besides, it makes training and
computation more efficient and promotes modularity. This design allows for different ALMs or
LDMs to be swapped in or out with minimal re-training effort, making it both practical and extensible
for diverse editing scenarios.

3.4 SEQUENTIAL STEREO AUDIO EDITING WITH LATENT DIFFUSION MODEL

The Latent Diffusion Model (LDM) in our framework performs audio editing conditioned on the
atomic editing steps S. To support this, we adopt a latent diffusion architecture [Hai et al.| (2024));
Rombach et al.|(2022)) and extend it to enable editing of stereo audio with spatial effects.

R High-level instruction: “Have this audio sounds like a sunny beach vibe”

i

ALM training
LoRa b LALM Step 1: Remove train engine sound

Audio <==p Step 2: Add ocean waves at left by 1dB
Encoder — Adapter » Large Language Model ——) Step n: Add people chatter at right by 2db
ol | | Inference only: Step 1 to Step n
11 " -
o | aud Noisy latent 6 LI I)MLDM training | i
riginal audio . . .] |l| |
VAE oo Diffusion™ | «===» oOoO VAE —
Encoder 0o Transformer > Edited latent Encoder ' I | ' I [I 1l
Original latent
%N StepT Edited audio
0 Trainable params Freeze params —> Forward Process <= Training Loss ----% Inference

Figure 3: SmartDJ framework. Our method incorporates an ALM as an edit planner that understands
both the original audio and the high-level instructions to produce atomic edit steps. These atomic
steps are then fed into an LDM editor to edit the audio sequentially. The ALM and LDM modules are
trained separately.

Stereo Audio VAE. Given a stereo audio signal a € R2*L where L is the number of time-domain
samples at two audio channels (left and right). The audio Variational Autoencoder (VAE) encodes a
into a latent representation a € RCXL/, where C and L’ denote the number of latent channels and
the temporal length of the latent sequence. Similar to DAC |Kumar et al.| (2023) and Stable Audio
Open Evans et al.| (2024b)), our audio VAE is based on a 1D-CNN autoencoder with a continuous
VAE bottleneck and snake activation functions. The resulting latent G has a dimension of C'=128
and length of L' = I./480, resulting a compression ratio of 7.5 x.

Latent Diffusion Model: Our diffusion model conditions on both the text description s; at the ¢-th
editing step and the latent representation of the audio from the previous step, G;_1, to generate the
updated latent G;. We use the FLAN-T5 |Chung et al.| (2024)) text encoder Ei.x () to convert s; to
text embeddings. At each editing step, we initialize a randomly noised latent a; € RE* L' which is

concatenated with a;_; to form the input [a;_1; a;] € R2C*L’ to the diffusion model. The model is
conditioned on Eie(s;) via cross-attention layers, and the diffusion timestep ¢ is incorporated through
a modified AdaLLN module Hai et al.| (2024) to reduce model parameters. We implement a Diffusion
Transformer (DiT) that learns to denoise the latent &, across multiple timesteps by predicting the
added noise. Let e denote the true added Gaussian noise, and let € (+) be the predicted noise output
by the model. The training objective is to minimize the following denoising loss:

Lipm = EeNN(o,I),t,si,ai,l,ag lle — €o(t, Erexi(si), [di—ﬁ &;D”z . 4

During inference, we use DDIM sampling Song et al.| (2021) with classifier-free guidance (CFG),
which has proven effective for text-guided generation and editing|Ho & Salimans|(2022). CFG steers
the denoising process by interpolating between conditional and unconditional model predictions:

€9 =Ww- 60(f, Elexl(si)a [difl; &{L]) + (1 - W) . 69(1;? 67 [&2‘,1; dﬂ)7 (5)
where w is the guidance scale and & denotes the text embedding of an empty string.

3.5 HIGH-LEVEL INSTRUCTION AUDIO EDITING DATASET CURATION

Since no public dataset features audio editing conditioned on high-level instructions, we develop a
scalable data generation pipeline, as illustrated in Fig. @h. For each data point, we first randomly
sample K single-event audio clips from public datasets, each labeled with tags such as {"car engine",
"bell ring", "goat bleat", ...}. We feed these labels into GPT-40 and prompt it to act as a sound
designer: it designs a high-level editing instruction P that transforms the original mix into a new audio
scene (e.g., "Make this sound like a countryside morning" or "Make it sound like a busy train station
on a sunny afternoon"). It then decomposes P into a sequence of atomic edits S = {s1, s2, ..., Sn },
including both add operations and modifications to existing events (e.g., remove, turn up/down,
change sound direction).

Once the sound designer has provided the sequential edit operations, an audio signal processing based
composer takes over. To generate edit audio pairs, the composer first synthesizes the initial audio ag
by superposing the K audio clips. Spatial effects are rendered with direction-dependent phase and
amplitude on two channels Lan et al|(2024). For each atomic edit s;, we proceed as follows:

Original audio

Car engine Bell ring Goat bleat ! event gardenpeaceful
! 2N€outdoor
I I JFffiln ——— a0 ¢ g o
: constriiction Clty
R p “Make this sound like a Composer X et Street bUS ploat
-«— countryside morning” | y day
5 Car engine 1 farm bU“SOtﬂl‘lwl;lg COZY
c Atomic edit steps S 1 s
=) [11]1f]1 x0 | quiet offlce
G | Step 1: Remove the car engine sound | ' "'“l' ay . nighticountryside
% l + Rooster crowing 1 b) Key word in the dataset
< @90 ! rae%
e ingatri Il | ay !
o | Step 2: Add rooster crowing at right | 1
© 1 o 5 17%
l Church bell ring l 1 126 12% 13%
Alinflixos 1 - -
| Step n: Turn down church bell ring /| — II |||| |a‘" : NS @o“ ‘@/\9 +.é’°(' ~
Edited audio | NI

a) Dataset synthesis pipeline c) Composition of operations

Figure 4: Scalable data synthesis. a) pipeline: we sample audio clips from databases with text
labels and compose them into original audio ag; These text labels are then fed into GPT-40, which
is prompted to design a high-level instruction P and generate corresponding atomic steps S. We
compose the target audio ay, as, ..., a, following the atomic steps sequentially with rule-based
composer. b) Key words in the high-level instruction. c¢) The proportion of each single-step edit
operation in the dataset.

* If s; modifies an existing event, we update its volume level or sound direction.
* If s; is an add operation, we retrieve a new clip from the database with a matching label.

Since each sampled audio event is independently editable, an edit step s; that modifies an existing
event can be converted into event-level parameter adjustments, without altering any other sources in
the mixture a;_;. For example, to simulate "remove the car engine sound" (Fig.[d), we set the car
engine’s volume to zero to generate a;. To simulate "add rooster crowing at right", we retrieve a
rooster clip, apply the specified spatial effect, and superpose it on a; to obtain as. To simulate "turn
down the dog bark", we reduce the volume of the corresponding clip. This allows us to generate
a complete editing trajectory ai, aq, ..., a, by progressively updating event-level parameters and
re-composing the audio scene. Our resulting dataset contains high-level editing instructions, atomic
edit sequences, and the audio for the full editing trajectory. More details available in Appx.

4 EXPERIMENT

4.1 SETUP

Dataset. We use a combination of datasets including AudioCaps |Kim et al.|(2019), VGGSound [Chen
et al.| (2020), FSD50k [Fonseca et al.| (2021), ESC50 Piczak| (2015)), and WavCaps Mei et al.|(2024)).
We adopt a series of dataset cleaning pipelines following previous work |[Hai et al.|(2024); [Sun et al.
(2024); |Wang et al.| (2023)) by filtering events with noisy data labels or low clap scores. Each audio
is trimmed or padded into 10 seconds with a sampling rate of 24 K. We sample 2-5 audio events
and use GPT-40 to create 50k training pairs and 1k evaluation pairs of high-level audio editing data
to train audio language model and evaluate the whole editing pipeline. We present the keyword
in the high-level instructions in Fig. fp. We also expand the size of single-step editing data pairs
(s¢, a¢—1, ay) to 0.5M, where each step is a single atomic operation to train our LDM audio editor.
Fig. @k shows the proportion of each operation. Please find more details in the Appx. [A.T]

Metrics. To evaluate edit quality and diversity, we use common metrics in audio generation and
editing [Liu et al.| (2023a)); Wang et al.| (2023), including Fréchet Distance (FD), Kullback-Leibler
divergence (KL), Fréchet Audio Distance (FAD), Inception Score (IS), and Log-Spectral Distance
(LSD). We use CLAP score to measure the semantic similarities between the edited audio and the text
prompt. For spatial audio, we calculate GCC MSE (GCC) based on Generalized Cross-Correlation
with Phase Transform (GCC-PHAT), and use StereoCRW [Chen et al.[(2022) to produce stereo audio
features to evaluate CRW MSE (CRW) and Fréchet Stereo Audio Distance (FSAD).

Baselines. To evaluate the high-level instruction based audio editing task, we first train an end-
to-end version of Audit Wang et al.[(2023) that directly predicts the final-step edited audio a,,
conditioned on the original audio a, and high-level instruction P in one step without ALM. We
extend the mono-channel Audit to our binaural setting, where we stack the left and right channels of
the mel-spectrograms as the model inputs. We also evaluate various zero-shot and training-required

|||‘ Audio contents: . || Audio contents: |||| Audio contents:
baby cry, car engine rev people snore, bird singing clock tik tock, people whistle
Make this sound like

Have this sound like in
inside a busy family home R R an old library R

Atomic edit steps: Atomic edit steps: Atomic edit steps:
Remove engine roar Remove people snore Remove person whistle

28 Add vacuum cleaner at left by 3dB 828 Add crickets at left by -1dB B2 Turn up clock tick by 2dB

@ Add kitchen sounds at right by 2dB @ Add light wind at right by 0dB Q Add pages turning at left by 2dB
Figure 5: Examples of ALM’s output detailed steps. Our ALM module identifies events in the original
audio clips and reasons on the given high-level instruction to produce aligned editing steps.

Make it sound like recorded
in a quiet night outside

editing methods based on the ALM’s outputs to perform multi-step sequential editing. The zero-shot
methods include SDEdit Meng et al.| (2022), DDIM Inversion Mokady et al.|(2022)), ZETA |Manor &
Michaeli| (2024), and AudioEditor Jia et al.|(2024). For a fair comparison, we replace these methods’
generation backbone with the current SOTA methods. In AudioEditor, we replace Affusion with
BEWO Sun et al.|(2024) to support binaural editing. In SDEdit, DDIM Inversion, and ZETA, we
use Stable-Audio-Open [Evans et al.|(2024b)) as the backbone. For sequential editing with a trainable
editor, we also use an Audit baseline trained on single-step audio editing. In addition, we evaluate the
same set of baseline methods on single-step audio editing tasks. More details available in Appx.

Implementation details. SmartDJ ALM is initialized from Audio Flamingo 2 |Ghosh et al.|(2025a)
with 3B parameters. During training, we freeze the AF-CLAP module and fine-tune the adapter layers
and LLM with a LoRA module for 20 epochs with a batch size of 24. For LDM, it uses velocity
prediction with Zero-SNR, and CFG rescaling technique Lin et al.[|(2024) to adjust the magnitude
of the predicted velocity and avoid over-exposure. It is trained on single-step editing data with a
batch size of 256 of 500k iterations. 10% text is replaced with empty strings to enable unconditional
modeling. The learning rates for the ALM and LDM training are le-5 and Se-5 with AdamW. All
experiments are conducted with four NVIDIA L40S GPUs. More details available in Appx.

4.2 RESULTS

High-level instruction audio editing task. We first show inference examples from our ALM module
in Fig.[5] The ALM-generated atomic editing steps accurately align both the original audio contents
and the high-level editing instructions. For example, it correctly removes audio event engine roar
when transferring audio scene into a busy family home vibe. It also removes people whistle and adds
pages turning to enhance the immersion of being in an old library. More examples in Appx. [C.1}

Framework Method Training Speed FD| FAD| KL| LSD] ISt CLAPt
w/o ALM Audit v 2.07s 39.6 10.07 3.13 1.96 329 0.125
SDEdit X 301s (74.6s) 27.3 3.73 326 225 6.66 0.188
DDIM X 331s(82.1s) 34.3 9.49 407 223 397 0.076
w/ ALM ZETA X 3565 (88.2s) 28.8 3.75 293 224 772 0.224
AE X 406s (101s) 27.6 5.02 322 211 891 0211
Audit v 11.6s (2.07s) 29.4 5.71 281 151 395 0.197
SmartDJ (Ours) v 13.1s (2.40s) 14.7 1.53 285 142 836 0.238

Table 1: Quantitative results of the whole pipeline from high-level instructions to audio editing. Speed
in () is the time for a single-step edit. AE denotes AudioEditor; DDIM denotes DDIM Inversion.

We present the results of the high-level instruction audio editing task in Tab. [I] The first row is the
end-to-end Audit baseline, which iss directly trained on high-level instructions and the final target
audio, showing the worst performance overall. Since no prior method can interpret the high-level
instructions, we use the same set of ALM-generated atomic steps to guide all audio editing models in
the multi-step evaluation, including the baselines and our method. We compare the edited audios
from each method with 1k reference audios. Our method achieves the lowest metric in FD, FAD,
LSD, and comparably low in KL, indicating the smallest discrepancy from the reference audios. It
also delivers a high IS metric, showing strong audio quality and diversity. In addition, the highest
CLAP score demonstrates the best semantic alignment between the edited audio and instruction.

Inference time. We also provide inference speed analysis in Tab.[l} The inference speed reported
outside the brackets denote the total time to complete the entire high-level instruction edit, while
the values inside indicate the per-round inference time of LDM. On average, SmartDJ’s ALM
requires 4.8s to generate one set of atomic editing instructions. With multi-round reasoning, SmartDJ

Remove Extract Change Turn up
birds chirping at the front

Original

Frequency

Enhanced

Pred

Frequency
Frequency

Target

> >
z g
g g
5 g
g g
E 2
g g
£ £

Figure 6: Examples on Remove, Extract, Change, Turn up operations. SmartD]J edited audio
are closely aligned with the ground truth. Yellow boxes highlight edited sound components.

Add Remove/Extract
FD| FAD| KL] LSD] ISt GCC| CRW| FSAD| FD| FAD| KL| LSD|) GCC{ CRW| FSAD|

SDEdit 33.0 3.92 2.59 201 471 1433 131.4 0.42 46.6 464 238 189 1595 1579 0.45
DDIM 36.9 6.28 2.64 202 457 1312 116.1 0.11 539 569 275 185 159.6 138.5 0.29
ZETA 37.6 3.64 2.46 171 5.04 1433 127.6 0.52 406 378 192 1.99 161.7 1559 0.43
AE 30.5 3.66 2.13 1.84 551 1335 145.8 0.55 471 3.65 243 201 1640 165.6 0.58
Audit 36.5 449 195 142 437 1457 136.3 0.31 545 756 212 165 189.2 204.5 1.07
SmartDJ 22.7 1.82 1.39 135 596 76.5 41.3 0.03 260 257 103 171 15.9 55 0.02

Method

(a) Audio editing operation add and remove/extract
Turn Up/Down Change
FD, FAD, KL, LSD| GCC| CRW| FSAD| FD|, FAD) KL| LSD| GCC| CRW/ FSAD|

Audit 47.1 5.6 1.51 104 1368 139.0 0.89 425 49 134 102 1703 1635 0.99
SmartDJ] 11.8 1.0 027 1.01 23.3 2.86 0.01 13.0 088 033 1.00 59.6 36.6 0.02

Method

(b) Audio editing operation turn up/down, change sound direction
Table 2: Quantitative results on all individual audio editing operations.

completes a full edit in 13.1s, which is significantly faster than training-free baselines. Our approach
is slower compared with end-to-end Audit (2.07s) or Audit with ALM (11.6s), but this trade-off
yields substantially better editing quality and alignment with target instructions.

Single-step audio editing. We present the results of single-step audio editing operations. Tab. [2a]
shows results on add. Our method consistently outperforms baseline methods in the edited audio,
including better similarities to the ideal target audio (lowest FD, FAD and KL), and higher quality
and diversity shown by the highest IS. Furthermore, stronger spatial metrics also indicate that the
stereo audio characteristics are preserved better by SmartD]J.

Tab. [2a] also shows the performance on remove and extract tasks. The results clearly indicate
that our method delivers the best performance in aligning with the ground truth edited audio across
both operations. We show the results on turn up/down and change sound direction
tasks in Tab. 2Bl Our method again shows stronger performance over Audit, which demonstrates
SmartDJ has better fine-grained manipulation in audio event properties. This is because Audit’s
VAE operates on mel-spectrograms and discards phase information, which is critical for spatial cues.
SmartDJ employs a diffusion transformer, which provides stronger long-range temporal modeling and
richer cross-attention conditioning. These architectural upgrades allow edits to be both semantically
precise and spatially coherent. Some examples of spectrogram visualization are shown in Fig. [
More qualitative comparisons can be found in Appx.[C.2]

Human evaluations. We evaluate the subjective preference via a user study. We provide users with
data pairs consisting of the original audio, the editing prompt, SmartDJ edited result, and edited
results from a random competing baseline. We ask the user to select the one that has higher audio
quality, has better alignment with the text or spatial instructions, and aligns with the original audio.
We conducted extensive evaluations with 19 participants and 20 (10 high-level audio editing, 10
single-step editing) data pairs per participant. We separate the evaluation for high-level instruction
audio editing and single-step editing in Fig.[7] In both tasks, SmartDJ is much preferred over all
competing methods. Our method delivers the best audio quality and the best alignment with both the
high-level instruction and the single-step instruction from user perception. More details in Appx.[C.3]

8

Complex edit quality Complex edit alignment °
SmartD) 90.41%| |Audit SmartD) 93.15%] |Audit % 06 /‘
SmartD) 95.52%] |AE SmartD) 91.04%] |AE @ AudioEditor
fa) —— ZETA

SmartD) 80.00% |zETA SmartD) 87.00%| [zETA 304 —— Audit

Single step quality Single step alignment & —— SmartD)
SmartD) 95.35%] |Audit SmartD) 96.76%]|Audit §’ —
SmartD) 86.27%| |AE SmartD) 84.92%| |AE 02— 3 3 3 z
SmartD) 77.36%| ZETA SmartD) 88.89%| |ZETA Number of edit rounds

Figure 7: User study results. In both audio quality and text/audio Figure 8 Similarity. with Qr.igi-
alignment, SmartDJ is consistently preferred over baselines in nal audio after multiple editing

the high-level instruction editing task and single-step tasks. rounds.
Study Objectives Variation FD| FAD] KL| LSD}] ISt CLAPt
wio ALM 236 314 291 184 463 0.137
ALM module w/ ALM 147 153 285 142 836 0238
Add — Modify — Remove 149 159 288 148 809 0234
Editing order Random order 14.7 1.56 288 1.47 816 0.237

Remove — Modify — Add 147 153 285 142 836 0238

AudioSep|Liu et al.|(2024b) 27.1 286 0.88 1.63 N/A N/A
SmartDJ 257 255 078 171 N/A N/A

Table 3: Model ablations.

Extract operation

4.3 ABLATION STUDIES

Audio quality over multi-round editing. Since the high-level instruction audio editing task involves
a sequence of editing, unchanged content must remain intact after multiple steps. To evaluate this, we
design a "round-trip" edit experiment: we perform the operations "add the sound of .A" and "remove
the sound of A" on an audio clip for five rounds, where A is a pseudo audio label. For an ideal
audio editor, this sequence of round-trip operation should exactly reconstruct the original audio. We
measure the LSD between each round’s edited output with the original audio clip (Fig.[g)). SmartDJ
consistently achieves the lowest LSD, indicating the smallest drift from the original content. This
demonstrates that our method preserves the unedited audio content under repeated editing actions.

Effectiveness of ALM. We conduct an ablation by removing the ALM module and training a variant
of the LDM end-to-end. As shown in Tab. 3] SmartDJ performs significantly worse without ALM,
showing the importance of ALM’s intermediate reasoning capabilities. ALM enables the model to
produce semantically coherent edits aligned with the high-level instruction and the original audio.

Editing order. We adopt a simple ordering strategy of remove — modify (volume/direction) —
add, which intuitively avoids removing newly inserted content. To test the impact of ordering, we
also experiment with two alternatives: randomized and reversed order. As shown in Tab. 3] both
alternatives result in only marginal degradation compared to our default ordering. This indicates
that the editing order has minimal influence on the final results, suggesting that ALM-generated
instructions rarely contain conflicting operations.

Compare with sound separation model. We compare SmartDJ with a recent sound separation
model AudioSep |Liu et al.|(2024b) on the Ext ract operation. Ours achieves comparable or slightly
better performance (Tab. [3). This suggests that while our model is designed for general-purpose audio
editing, it is competitive on target sound separation tasks.

5 DISCUSSION

Conclusion. We presented SmartDJ, the first framework for high-level instruction guided stereo
audio editing that utilizes the reasoning capability of audio language models and strong editing
capabilities of the latent diffusion model. Our approach produces atomic editing steps and executes
them sequentially to achieve perceptually realistic stereo audio transformations. Extensive evaluations
on both subjective audio metrics and human perceptual studies demonstrate that SmartDJ outperforms
prior methods, and preserves spatial fidelity in complex scenes.

Limitations. Supporting a new task-specific editing operation on the LDM requires retraining the
diffusion model. However, these edits can usually be achieved through a combination of our proposed
atomic steps. Besides, a future direction is to implement an end-to-end joint training strategy of ALM
and LDM that combines reasoning with audio editing.

6 ETHICS STATEMENT.

Our work focuses on audio editing for research and creative applications such as immersive media,
conferencing, and sound design. The dataset is generated from publicly available sound event libraries
and synthetic mixing, without personal or sensitive recordings. We encourage responsible use aligned
with academic and creative purposes.

7 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the model architectures, training objectives, and data generation
pipeline in the main paper and appendix. Hyperparameters, training configurations, and dataset con-
struction details are included to ensure reproducibility. Code, pretrained models, and the synthesized
dataset will be released upon acceptance to facilitate replication of our results.

REFERENCES

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
editing instructions, 2023. URL https://arxiv.org/abs/2211.09800

Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
visual dataset. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 721-725. IEEE, 2020.

Ziyang Chen, David F Fouhey, and Andrew Owens. Sound localization by self-supervised time delay
estimation. In European Conference on Computer Vision, pp. 489-508. Springer, 2022.

Ziyang Chen, Prem Seetharaman, Bryan Russell, Oriol Nieto, David Bourgin, Andrew Owens, and
Justin Salamon. Video-guided foley sound generation with multimodal controls. arXiv preprint
arXiv:2411.17698, 2024.

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
Real-time open-vocabulary object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 16901-16911, June 2024.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
audio-language models. arXiv preprint arXiv:2311.07919, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-based
semantic image editing with mask guidance, 2022. URL https://arxiv.org/abs/2210.
11427.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model, 2023. URL https://arxiv.org/abs/2303.03378!

Jean-Baptiste Alayrac et al. Flamingo: a visual language model for few-shot learning, 2022. URL
https://arxiv.org/abs/2204.14198\

Zach Evans, CJ Carr, Josiah Taylor, Scott H Hawley, and Jordi Pons. Fast timing-conditioned latent
audio diffusion. In Forty-first International Conference on Machine Learning, 2024a.

Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio
open. arXiv preprint arXiv:2407.14358, 2024b.

10

https://arxiv.org/abs/2211.09800
https://arxiv.org/abs/2210.11427
https://arxiv.org/abs/2210.11427
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2204.14198

Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. Fsd50k: an open
dataset of human-labeled sound events. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 30:829-852, 2021.

Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guiding
instruction-based image editing via multimodal large language models, 2024. URL https:
//arxiv.org/abs/2309.17102.

Zhiqi Ge, Hongzhe Huang, Mingze Zhou, Juncheng Li, Guoming Wang, Siliang Tang, and Yueting
Zhuang. WorldGPT: Empowering LLM as multimodal world model. In ACM Multimedia 2024,
2024. URL https://openreview.net/forum?id=GltsgarGAw.

Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li, Shuyang Gu, Ting Zhang, Jianmin Bao, Zheng
Zhang, Han Hu, Dong Chen, and Baining Guo. Instructdiffusion: A generalist modeling interface
for vision tasks, 2023. URL https://arxiv.org/abs/2309.03895.

Sreyan Ghosh, Zhifeng Kong, Sonal Kumar, S Sakshi, Jaechyeon Kim, Wei Ping, Rafael Valle, Dinesh
Manocha, and Bryan Catanzaro. Audio flamingo 2: An audio-language model with long-audio
understanding and expert reasoning abilities. arXiv preprint arXiv:2503.03983, 2025a.

Sreyan Ghosh, Zhifeng Kong, Sonal Kumar, S Sakshi, Jachyeon Kim, Wei Ping, Rafael Valle, Dinesh
Manocha, and Bryan Catanzaro. Audio flamingo 2: An audio-language model with long-audio
understanding and expert reasoning abilities, 2025b. URL https://arxiv.org/abs/2503|
03983L

Yuan Gong, Hongyin Luo, Alexander H Liu, Leonid Karlinsky, and James Glass. Listen, think, and
understand. arXiv preprint arXiv:2305.10790, 2023.

Jiarui Hai, Yong Xu, Hao Zhang, Chenxing Li, Helin Wang, Mounya Elhilali, and Dong Yu. Eza-
udio: Enhancing text-to-audio generation with efficient diffusion transformer. arXiv preprint
arXiv:2409.10819, 2024.

Yiduo Hao, Sohrab Madani, Junfeng Guan, Mohammed Alloulah, Saurabh Gupta, and Haitham
Hassanieh. Bootstrapping autonomous driving radars with self-supervised learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15012—
15023, June 2024.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-prompt image editing with cross attention control, 2022.

Mojtaba Heydari, Mehrez Souden, Bruno Conejo, and Joshua Atkins. Immersediffusion: A generative
spatial audio latent diffusion model. arXiv preprint arXiv:2410.14945, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. /CLR, 1(2):3, 2022.

Jiawei Huang, Yi Ren, Rongjie Huang, Dongchao Yang, Zhenhui Ye, Chen Zhang, Jinglin Liu, Xiang
Yin, Zejun Ma, and Zhou Zhao. Make-an-audio 2: Temporal-enhanced text-to-audio generation.
arXiv preprint arXiv:2305.18474, 2023a.

Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan, Xiaodong Cun, Yixiao Ge, Jiantao
Zhou, Chao Dong, Rui Huang, Ruimao Zhang, and Ying Shan. Smartedit: Exploring complex
instruction-based image editing with multimodal large language models, 2023b. URL https
//arxiv.org/abs/2312.06739.

Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and

Cihang Xie. Hg-edit: A high-quality dataset for instruction-based image editing. arXiv preprint
arXiv:2404.09990, 2024.

11

https://arxiv.org/abs/2309.17102
https://arxiv.org/abs/2309.17102
https://openreview.net/forum?id=G1tsqarGAw
https://arxiv.org/abs/2309.03895
https://arxiv.org/abs/2503.03983
https://arxiv.org/abs/2503.03983
https://arxiv.org/abs/2312.06739
https://arxiv.org/abs/2312.06739

Yuhang Jia, Yang Chen, Jinghua Zhao, Shiwan Zhao, Wenjia Zeng, Yong Chen, and Yong
Qin. Audioeditor: A training-free diffusion-based audio editing framework. arXiv preprint
arXiv:2409.12466, 2024.

Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating
captions for audios in the wild. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 119-132, 2019.

Jing Yu Koh, Daniel Fried, and Ruslan Salakhutdinov. Generating images with multimodal language
models, 2023. URL|https://arxiv.org/abs/2305.17216.

Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro. Audio
flamingo: A novel audio language model with few-shot learning and dialogue abilities. arXiv
preprint arXiv:2402.01831, 2024a.

Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro. Audio
flamingo: A novel audio language model with few-shot learning and dialogue abilities, 2024b.
URLhttps://arxiv.org/abs/2402.01831.

Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
fidelity audio compression with improved rvqgan. Advances in Neural Information Processing
Systems, 36:27980-27993, 2023.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning
segmentation via large language model. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 9579-9589, June 2024.

Zitong Lan, Chenhao Zheng, Zhiwei Zheng, and Mingmin Zhao. Acoustic volume rendering for
neural impulse response fields. Advances in Neural Information Processing Systems, 37:44600—
44623, 2024.

Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, and Jianfeng
Gao. Multimodal foundation models: From specialists to general-purpose assistants, 2023a. URL
https://arxiv.org/abs/2309.10020.

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang, Jiaming
Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-centric
robotic manipulation, 2023b. URL https://arxiv.org/abs/2312.16217.

Jinhua Liang, Huan Zhang, Haohe Liu, Yin Cao, Qiugiang Kong, Xubo Liu, Wenwu Wang, Mark D
Plumbley, Huy Phan, and Emmanouil Benetos. Wavcraft: Audio editing and generation with large
language models. arXiv preprint arXiv:2403.09527, 2024.

Susan Liang, Dejan Markovic, Israel D Gebru, Steven Krenn, Todd Keebler, Jacob Sandakly, Frank
Yu, Samuel Hassel, Chenliang Xu, and Alexander Richard. Binauralflow: A causal and streamable

approach for high-quality binaural speech synthesis with flow matching models. arXiv preprint
arXiv:2505.22865, 2025.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 5404-5411, 2024.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023a.

Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiugiang Kong, Qiao Tian, Yuping Wang, Wenwu
Wang, Yuxuan Wang, and Mark D Plumbley. Audioldm 2: Learning holistic audio generation with
self-supervised pretraining. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b. URL
https://arxiv.org/abs/2304.08485.

12

https://arxiv.org/abs/2305.17216
https://arxiv.org/abs/2402.01831
https://arxiv.org/abs/2309.10020
https://arxiv.org/abs/2312.16217
https://arxiv.org/abs/2304.08485

Huadai Liu, Tianyi Luo, Qikai Jiang, Kaicheng Luo, Peiwen Sun, Jialei Wan, Rongjie Huang, Qian
Chen, Wen Wang, Xiangtai Li, et al. Omniaudio: Generating spatial audio from 360-degree video.
arXiv preprint arXiv:2504.14906, 2025.

Xubo Liu, Qiugiang Kong, Yan Zhao, Haohe Liu, Yi Yuan, Yuzhuo Liu, Rui Xia, Yuxuan Wang,
Mark D Plumbley, and Wenwu Wang. Separate anything you describe. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 2024b.

Xinji Mai, Zeng Tao, Junxiong Lin, Haoran Wang, Yang Chang, Yanlan Kang, Yan Wang, and
Wengiang Zhang. From efficient multimodal models to world models: A survey, 2024. URL
https://arxiv.org/abs/2407.00118!.

Hila Manor and Tomer Michaeli. Zero-shot unsupervised and text-based audio editing using ddpm
inversion. arXiv preprint arXiv:2402.10009, 2024.

Xinhao Mei, Chutong Meng, Haohe Liu, Qiugiang Kong, Tom Ko, Chengqi Zhao, Mark D Plumbley,
Yuexian Zou, and Wenwu Wang. Wavcaps: A chatgpt-assisted weakly-labelled audio captioning
dataset for audio-language multimodal research. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2024.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations, 2022. URL
https://arxiv.org/abs/2108.01073l

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models, 2022. URL https://arxiv.org/abs/
2211.09794.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. EmbodiedGPT: Vision-language pre-training via embodied chain of
thought. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=IL5zJgfxAa.

Karol J Piczak. Esc: Dataset for environmental sound classification. In Proceedings of the 23rd ACM
international conference on Multimedia, pp. 1015-1018, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Infer-
national Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=StlgiarCHLP.

Peiwen Sun, Sitong Cheng, Xiangtai Li, Zhen Ye, Huadai Liu, Honggang Zhang, Wei Xue, and Yike
Guo. Both ears wide open: Towards language-driven spatial audio generation. arXiv preprint
arXiv:2410.10676, 2024.

Qwen Team. Qwen2.5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

Yuancheng Wang, Zeqian Ju, Xu Tan, Lei He, Zhizheng Wu, Jiang Bian, et al. Audit: Audio editing
by following instructions with latent diffusion models. Advances in Neural Information Processing
Systems, 36:71340-71357, 2023.

Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye HAO, and Mingsheng Long.
ivideoGPT: Interactive videoGPTs are scalable world models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024a. URL https://openreview,
net/forum?id=4TENzBftZR.

Jiannan Wu, Muyan Zhong, Sen Xing, Zeqiang Lai, Zhaoyang Liu, Zhe Chen, Wenhai Wang,
Xizhou Zhu, Lewei Lu, Tong Lu, Ping Luo, Yu Qiao, and Jifeng Dai. VisionLLM v2: An end-
to-end generalist multimodal large language model for hundreds of vision-language tasks. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b. URL
https://openreview.net/forum?id=nvYDPF4LJK.

13

https://arxiv.org/abs/2407.00118
https://arxiv.org/abs/2108.01073
https://arxiv.org/abs/2211.09794
https://arxiv.org/abs/2211.09794
https://openreview.net/forum?id=IL5zJqfxAa
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=4TENzBftZR
https://openreview.net/forum?id=4TENzBftZR
https://openreview.net/forum?id=nvYDPF4LJK

Jianzong Wu, Xiangtai Li, Chenyang Si, Shangchen Zhou, Jingkang Yang, Jiangning Zhang, Yining
Li, Kai Chen, Yunhai Tong, Ziwei Liu, and Chen Change Loy. Towards language-driven video
inpainting via multimodal large language models, 2024c. URL https://arxiv.org/abs/
2401.10226.

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
augmentation. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1-5. IEEE, 2023.

Manjie Xu, Chenxing Li, Dan Su, Wei Liang, Dong Yu, et al. Prompt-guided precise audio editing
with diffusion models. arXiv preprint arXiv:2406.04350, 2024.

Shuyang Xu, Zhiyang Dou, Mingyi Shi, Liang Pan, Leo Ho, Jingbo Wang, Yuan Liu, Cheng Lin,
Yuexin Ma, Wenping Wang, et al. Mospa: Human motion generation driven by spatial audio. arXiv
preprint arXiv:2507.11949, 2025.

Zhiwei Zheng, Dongyin Hu, and Mingmin Zhao. Scalable rf simulation in generative 4d worlds.
arXiv preprint arXiv:2508.12176, 2025.

14

https://arxiv.org/abs/2401.10226
https://arxiv.org/abs/2401.10226

A DATASET CURATION PROCESS

A.1 DATASET PREPARATION

We construct our training corpus by merging several publicly-available audio dataset, including VGG-
Sound, AudioCaps, WavCaps, ESC-50, and FSD50K. Since some of these sets provide audio captions
rather than discrete audio label, we first convert every caption to audio labels with GPT-40-mini
API. We only retain single-labeled audio clip and any clip whose caption maps to multiple events is
discarded. A CLAP model scores the semantic correspondence between the audio and its new label.
Samples with a similarity score below 0.3 are filtered out. The remaining clips from all sources are
finally mixed into one large dataset that we use for subsequent data curation.

A.2 ATOMIC EDIT ACTIONS

We explain the details on creating the single-step atomic edit data pairs. For this single-step audio
editing, we have an original audio a;_;, a single atomic edit operation s;. Base on atomic edit
operation s;, we can generate the edited audio a;.

Add. Assume the original audio is a mix of audio content A+ B+C'. To add a new content into this
original audio, we sample a new audio content D from the database and mix the D with the original
audio A+ B4+C+ D. The atomic template is "Add the sound of {dog barking} at {right} with {3} db".
The contents inside the {} can be changed to other sound events or sound attributions. We support
various sound direction (left, front and right) and dynamic volume adjustment.

Remove. Given an original mix A+B+C, let B be the undesired source. We suppress B so the output
becomes A+C'. THe atomic template is Atomic template: "Remove the sound of {bird chirping} {at
right}". The directional phrase in braces is optional. If there are similar audio contents in the same
clip, the spatial features enables to manipulate it precisely.

Extract. Starting from the same mix A+ B+ C, we isolate one target source A and mute everything
else, yielding only A. The atomic template is "Extract the sound of {speaking} {at the right}". The
direction is optional.

s

Turn up/down To change loudness of a specific source B, we scale it by «,, where a> 1 is for “up’
and 0 << 1 is for “down". The resulted audio clip is A + aB + C. The atomic template is "Turn
{up / down} the sound of {engine rev} by {2} dB". We also support a dynamic range of volume
adjustment.

Change sound direction. We alter only the spatial cues of a specific source C, producing an edited
version C while leaving the other tracks untouched: A+B+C". The atomic template used is "Change
the sound of {baby crying} {from front} to {right}". The “from” clause could also be omitted.

A.3 COMPLEX AUDIO EDITING DATASET CURATION

In the dataset curation process, we first sample 2-5 audio labels in the database, with LLM randomly
assigned volume and sound directions. We then call the GPT-40 batch API with sound sources
and attributions. For each API call, we provide 15 sets of sound sources. Through API call, each
set of sound sources will return a single data pair containing high-level editing instruction and the
corresponding atomic editing steps. We follow these atomic editing steps to manually generate the
step-by-step target edited audio with the rules in[A.2] We generate SOK data pairs for complex audio
editing for training. We generate 1K data pairs from AudioCaps test/validation set for evaluation.

Starting from these S0K complex audio editing pairs, we collect the generated corresponding step-by-
step atomic actions and produce about 200K single step audio editing pairs (s;, a;—1, a;). We further
scale up the this dataset size to 500K to train the LDM audio editor and we also generate another
1K extra audio data pairs to evaluate the performance of single step audio editing. This scaled-up
single step audio editing dataset keeps some instructions with audio captions, improving the LDM’s
robustness to different audio contents in the atomic edit instructions.

We provide the details of our Base Prompt for dataset curation as follow:

15

You are an expert in spatial audio editing and sound design.

Your task is to generate complex audio editing instructions based on a given list of sound sources (labels).
The sound sources will be provided as a list of full sentences (as strings), not character lists. Treat each
sentence as a single atomic sound unit. Do not tokenize or split the sound sources into characters.

For example, if you are given: "a baby crying and a man talking; a bird is chirping; dog barking". You
should consider "a baby crying and a man talking" as a complete sound source. "a bird is chirping" is
another complete sound source and "dog barking" is another sound source. You then generate the
step-by-step audio editing instructions based on the given complex instructions.

Task: you need to first brainstorm a complex audio editing instruction

Imagine a realistic and creative soundscape editing for the given audios.

You are not limited to the provided audio contents for the editing instruction. And the complex editing
instructions should be brief.

The complex editing instructions could be a soundscape transformation. For example:

- - Make this sound like it was recorded in a bookstore

- - Make this sound like a busy coffee shop

- - Make this sound like a train station

- - Make this sound like a forest at night

- - Make this sound like a beach

- - Make this sound like a sunny day

- - Craft this sound to feel like a park

- - Make this audio sound like a quiet farm

- - Make this audio sound like a firework show

Your generated complex instructions can be broader than these provided examples. Use your
imaginations!

But remember to keep them brief, the complex editing instructions ideally should not contain the actual
sound sources.

Then, based on the given sound event, give me the detailed editing instructions.

You then generate detailed editing instructions based on the complex audio editing instruction.

Ensure the editing makes sense (e.g., no waves in a desert, no sheep indoors, rustling leaves in the forest,
seas waves in the beach, no raining in the sunny day).

You are encouraged to remove the original audio contents, but you are required to maintain at least one

sound source, not removing all of them.

Do not split or partially reference a sound source when applying operations.

Use a combination of simple operations (but NOT necessarily all of them). For example:

- - Add (e.g., thunderstorm, cat meowing) (for the add operation, you should add up to two additional
sources that best align with the complex editing instructions)

- - Remove (For remove, you should remove at least one sound sources (up to two sound sources), but
you must keep at least one sound source!)

- - Turn up/down (e.g., turn up/turn down the sound of xxx by xxx db (between 0 and 6db))
- - Change sound direction.

Each "target" in remove/turn up/turn down/change must exactly match one of the provided "sound
sources"

For the "add" operation:

non

- - The "target" must clearly describe the new sound being added (e.g., "crowd chatter", "rain",
"footsteps on gravel").
- - The "effect" should specify the volume and direction (e.g., "at front by 4dB").

- - Do NOT use "none", "null", or placeholder values as the target. The target must always be a
descriptive label of the added sound.

- - The added sound should not duplicate any original sound source.
The same operation can be repeated for multiple targets.
When doing add, you can also have volume and direction attributes

When editing existing sound sources, you can also have mixed attributes in terms of the volume and
sound directions.

16

- You must ensure each step logically contributes to the final transformation.

Return the output in the following structured JSON format:

{
"sound sources": ["...", "..."], here you should put the sound sources you are given
"complex editing instruction": "...",
"atomic editing steps": [
{"operation": "add", "target": "...", "effect": "at xxx(left, front, right) by xxxdB"},
{"operation": "remove", "target": "...", "effect": "None"},
{"operation": "turn up/turn down", "target": "...", "effect": "xxxdB"},
{"operation": "change", "target": "...", "effect": "to xxx (left, right, or front)"},
]
}

Do NOT break down sound sources into individual words or characters. Sound sources are complete strings
and must remain so in the JSON.

17

B IMPLEMENTATION DETAILS

B.1 BASELINES IMPLEMENTATION

We present the following baseline methods to evaluate the complex audio editing task. One of the
baselines is an end-to-end version of Audit without using ALM. All other baseline methods perform
multi-step sequential editing with ALM’s atomic editing step outputs.

End-to-End Audit. We first train an end-to-end version of Audit that directly predicts the final-step
edited audio a,, conditioned on the original audio a(and high-level instruction P in one step without
ALM. We extend the mono-channel Audit to our binaural setting, where we stack the left and right
channels of the mel-spectrograms as the model inputs. Follow the original implementation, we
convert 10s of audio into mel-spectrograms with a size of 80 x 624. using a hop size of 256, a window
size of 1024, and mel-bins of size 80. We use the same model configurations in the original paper.

SDEdit. SDEdit is a zero-shot method that does not require training a new audio editing model. It
uses an off-the-shelf text-to-audio (TTA) generation model, which we use Stable-Audio-Open, as it
supports binaural audio generation. We use the default 200 total diffusion steps and start the reverse
process from a timestep of 100. We use a classifier-free-guidance (CFG) scale of 7.5. The target
caption is composed by concatenating the individual event captions after each editing step.

DDIM Inversion. Similar to SDEdit, we also use Stable-Audio-Open as the TTA generation model.
We use the default 200 total diffusion steps and start the reverse process from a timestep of 100. We
use a CFG scale of 7.5 for both the target and the source. The source text prompt and the target text
prompt are composed by concatenating the individual event captions before and after each editing
step, respectively.

ZETA. Similar to SDEdit and DDIM Inversion, we also use Stable-Audio-Open as the TTA generation
model. We use the default 200 total diffusion steps and start the reverse process from a timestep
of 100. We use a CFG scale of 7.5 for the target and a CFG scale of 1 for the source. The source
text prompt and the target text prompt are composed by concatenating the individual event captions
before and after each editing step, respectively.

AudioEditor. Specifically in AudioEditor, we replace Affusion with the spatial generator SpatialSonic
in BEWO to support binaural editing. We use the default 100 total editing steps with 5 iterations
per step to update text embedding for null-text inversion. For the addition task, we use the default
punishment ratio (alpha) of -0.001. For the remove or extract task, we use the default punishment
ratio (alpha) of 1.

Audit with ALM. To evaluate sequential editing with a trainable editor, we use an Audit baseline
trained on single-step audio editing data with input audio a;_1, atomic instruction s;, and output
edited audio a;. The model and data configurations are the same with the end-to-end Audit baseline
variant.

B.2 SMARTDJ IMPLEMENTATION

ALM. Our ALM module is initialized from Audio Flamingo 2. This model contains an AF-CLAP
audio encoder module to encode the mono-channel audio. The input 10-second audio is first resampled
to 16KHz and transformed into a dense audio features z, € R54%2048 The mono-channel CLAP
encoder understands the audio semantics and sound events, which is enough to reason the atomic
steps to make the edited audio semantically align with the high-level instruction. This audio encoder
is followed by a representation transformation layers that expand the model capacity. This module
has three self-attention layers to the audio feature representation, each with 8 heads and a dimension
of 2048. Following this, gated cross-attention layers are used to condition audio representations on
the LLM. The LLM uses Qwen2.5-3B, a decoder-only causal LLM with 3B parameters, 36 hidden
layers, and 16 attention heads. During training, we keep both the AF-CLAP and LLM frozen during
training. The audio representation transformation layers are fully optimized. We apply LoRA only to
the gated cross-attention layers with a rank of 16.

DiT architecture We conduct experiments at 24KHz audio sample rate. The waveform latent
representation operates at S0Hz and consists of 128 channels. Our DiT model has 24 blocks, each
with a channel of 1024, 16 attention heads, and an FEN (Feed-Forward Network) dimension of 4096,

18

resulting in total of 597M parameters. During training, we begin with a 50K linear warm-up phase
and the result is training with a cosine learning rate decay. In the inference, we use 100 diffusion
steps and a guidance scale of 4, with guidance rescale of 0.8.

C MORE RESULTS

In this section, we provide more qualitative results on the ALM-inferenced editing steps and the
LDM edited audio results.

C.1 RESULTS ON ALM-INFERENCED ATOMIC EDITING STEPS

We show multiple examples on ALM-inferenced atomic editing steps. In each example, the "audio
labels" are the ground truth audio labels for reference and they are not provided to the ALM module.
Only the corresponding audios are provided to the ALM. We then input the high level instruction to
the ALM and it output the atomic editing steps.

Example 1: Make this sound like a quiet afternoon in a garden

Audio labels: clock tick, bird chirp, wind
High-level instructions: Make this sound like a quiet afternoon in a garden
Atomic editing steps:

- Remove the sound of clock tick

- Turn up the the sound of bird tweet by 3dB

- Add the sound of gentle breeze at front by 2dB

Example 2: Make this sound like a busy city street

Audio labels: engine rev, church bell ring
High-level instructions: Make this sound like a busy city street
Atomic editing steps:

- Remove the sound of bell ring

- Turn down the sound of engine rev by 2dB

- Add the sound of distant siren at left by 2dB

- Add the sound of traffic noise at front by 3dB

Example 3: Make this sound like a bustling park on a sunny day.

Audio labels: children scream, insect buzz, bird call, chainsaw run
High-level instructions: Make this sound like a bustling park on a sunny day.
Atomic editing steps:

- Remove the sound of chainsaw run

- Add the sound of laughter at left by 3dB

- Turn down children scream by 2dB

- Change the sound of bird call to front

Example 4: Make this sound like a serene beach

Audio labels: water waves, whistling, music playing
High-level instructions: Make this sound like a serene beach
Atomic editing steps:

- Remove the sound of whistling

- Turn up the sound of wave crash by 4dB

- Add the sound of seagulls calling at front by 3dB

19

Example 5: Make this sound like a busy office

Audio labels: typewriter tap, power tool drill
High-level instructions: Make this sound like a busy office
Atomic editing steps:

- Remove the sound of drilling

- Turn up the sound of typewriter type by 2dB

- Add the sound of phone ringing at right by 3dB

Example 6: Make this sound like a military base

Audio labels: fire truck siren, gunshot, vehicle move
High-level instructions: Make this sound like a military base
Atomic editing steps:

- Remove the sound of fire truck siren

- Turn up the sound of gunshot by 3dB

- Add the sound of helicopter blades at right by 2dB

Example 7: Make this sound like a calm night in the countryside

Audio labels: snoring, machine run, wind blow
High-level instructions: Make this sound like a calm night in the countryside
Atomic editing steps:

- Remove the sound of machine run

- Turn down the sound of wind blow by 2dB

- Add the sound of owl hooting at right by 2dB

Example 8: Make this sound like a bustling urban street

Audio labels: horn honk, cat, siren blare, male laugh
High-level instructions: Make this sound like a bustling urban street
Atomic editing steps:

- Remove the sound of cat

- Turn down the sound of siren blare by 2dB

- Add the sound of people chatter at front by 3dB

- Add the sound of traffic noise at left by 2dB

C.2 RESULTS ON ATOMIC EDITING STEPS

We provide more atomic editing results on add in Fig[9] As shown by the comparison with the
original audio and the edited one, while baseline method tends to replace the original clips and
completely generate a new audio clip, SmartDJ can successfully keep the original contents and add
new sound events into it.

We show more editing examples on remove and extract in Fig[I0]and [IT} Compared with baseline
method, SmartDJ can effectively either remove unwanted or extract wanted audio contents. The
edited results show good alignment with the ground truth edited audios.

Figure [I2] presents additional qualitative results for the change sound direction task. The y axis
in each figure is the sound direction heatmap. SmartDJ consistently relocates the source to the
requested spatial direction, and its outputs align well with the ground truth edited audios. By contrast,
Audit can not alter spatial effect, showing the limitations of using spectrogram audio encoder for
direction-aware editing.

20

Add Add
water splashes then a duck quacks a man talking as goats baa while Add Add
then a person laughs at right of 0 db wind blows at right of 2 db a cat is meowing at the left of -3 db a few loud snores at front of -2db

Original

SmartD)

Figure 9: Examples on add operation. The top row is the original audio and the rest rows are the
edited results. Only SmartDJ can keep the original audio clips while add new audio contents.

Remove Remove Remove Remove
birds chirping female laughs, male speakes rustling, music playing man speech and explosion

Original

AE

ZETA

Audit

SmartD)

Target

Figure 10: Examples on remove operation. The top row is the original audio and the bottom row is the
target audio. Only SmartDJ can completely remove unwanted audios parts and keep the remaining
part unchanged.

21

Extract Extract Extract Extract
whistling, speaking and laughing gunfire, shouting engine running, hissing speedboat

Original

ZETA

Audit

SmartD)

Target

Figure 11: Examples on extract operation. The top row is the original audio and the bottom row is
the target audio. Only SmartDJ can extract wanted audios that are clean and of high quality.

Change Change Change Change
man speaking, crinkling to right man screaming, man talking to left engine sound to front whilte noise, speech, rustling to left

Original

SmartD)

Target

Figure 12: Examples on change operation. The top row is the original audio and the bottom row is
the target audio. Only SmartDJ can perfectly edit the sound directions that are matching closely with
the target.

C.3 HUMAN SUBIJECTIVE STUDIES DETAILS
We provide more details on the subjective user study. We provide users with data pairs consisting

of the original audio, the editing instruction, the SmartDJ edited result, and the edited results from
a random competing baseline. In the case of single-step audio editing tasks remove, extract, turn

22

Audio Pair 15, Editing Instruction: change the sound of whistling with

Audio Pair 3, Editing Instruction: Make this sound like a protest in a city male speech at the front to the right
Original Audio Edited Audio 1 Edited Audio 2 Original Audio Reference Audio Edited Audio1 Edited Audio 2
Original Audio % Edited Audio 1 . Edited Audio 2 Original Audic Reference Au Edited Audio Edited Audio
Between Audio 1and Audio 2, which one do you feel align with the original audio and the
Between Audio 1 and Audio 2, which one do you feel align with the original audio and the editing instruction better? Instruction: change the sound of whistling with male speech at the
editing instruction better? Instruction: Make this sound like a protest in a city front to the right
Audio 1 Audio 2 Audio 1 Audio 2
Between Audio 1 and Audio 2, which one do you feel has the better audio quality? Between Audio 1and Audio 2, which one do you feel has the better audio quality?
Audio 1 Audio 2 Audio 1 Audio 2

Between Audio 1 and Audio 2, which one do you feel better preserves some of the original Audio 1 and Audio 2, which one do you Feel aligns better with the Reference Audio

audio's contents?

Audio 1 Audio 2 Audio 1 Audio 2

(a) User interface for complex audio editing task (b) User interface for change direction editing task

Figure 13: The audio pairs, questions, and user interfaces for different audio editing tasks

up/down, change sound direction where there exists a ground-truth editing solution, we also provide
it as the reference audio as shown in Fig. [[3b] We conduct evaluations with 19 participants and 20
(10 complex audio editing, 10 single-step editing) data pairs per participant.

In the 10 complex audio editing question pairs, we ask the user to select between the SmartDJ edited
audio and the edited results from a random competing baseline (randomly sampled from AudioEditor,
ZETA and Audit) according to the following three questions:

- Between Audio 1 and Audio 2, which one do you feel aligns with the original audio and the editing
instruction better?
- Between Audio 1 and Audio 2, which one do you feel has the better audio quality?

- Between Audio 1 and Audio 2, which one do you feel better preserves some of the original audio’s
contents?

In the single-step editing for add operation (3 pairs in total), we compare SmartDJ with a randomly
sampled method from three baselines (AudioEditor, ZETA and Audit). We ask the user to answer
four questions, with one additional question listed below:

- Between Audio 1 and Audio 2, which one do you feel the added spatial effect aligns with the text
instruction?

For the single-step remove and extract tasks (4 pairs) we compare SmartDJ with a randomly chosen
baseline model. For turn-up/turn-down and change direction (3 pairs) we benchmark only against
AUDIT, since the other baselines cannot perform these operations. Each pair includes a ground-truth
reference, and listeners answer the three evaluation questions listed below.

- Between Audio 1 and Audio 2, which one do you feel aligns with the original audio and the editing
instruction better?

- Between Audio 1 and Audio 2, which one do you feel has the better audio quality?
- Between Audio 1 and Audio 2, which one do you feel aligns better with the Reference Audio overall?

Across all tasks, SmartD]J is consistently preferred over all baseline methods. For complex audio

editing task, SmartDJ receives at least 80% of user votes over the baselines for audio quality, and at
least 87% for alignment with the high-level editing instruction and original audio. This shows that

23

SmartDJ faithfully performs the requested scene transformation while preserving the key elements of
the original audio. In the single-step editing task, our method receives more than 77% of user votes
for audio quality, and 84% for alignment with the single-step editing text prompt, spatial description,
and original or reference audio (when applicable). These results demonstrate that SmartDJ achieves
the highest user preference across both quality and alignment metrics, outperforming all competing
methods.

24

	Introduction
	Related work
	Method
	Problem Definition and Notations
	SmartDJ Framework
	Audio Language Model for Atomic Editing Steps Generation
	Sequential Stereo Audio Editing with Latent Diffusion Model
	High-level Instruction Audio Editing Dataset Curation

	Experiment
	Setup
	Results
	Ablation studies

	Discussion
	Ethics statement.
	Reproducibility statement
	Dataset curation process
	Dataset preparation
	Atomic edit actions
	Complex audio editing dataset curation

	Implementation Details
	Baselines implementation
	SmartDJ implementation

	More results
	Results on ALM-inferenced atomic editing steps
	Results on atomic editing steps
	Human Subjective Studies Details

