
Revisiting DETR Pre-training for Object Detection

Yan Ma1 · Weicong Liang2 · Bohan Chen3 · Yiduo Hao6 ·
Bojian Hou4 Xiangyu Yue5 · Chao Zhang2 · Yuhui Yuan6

Abstract Motivated by the remarkable achievements of
DETR-based approaches on COCO object detection and
segmentation benchmarks, recent endeavors have been di-
rected towards elevating their performance through self-
supervised pre-training of Transformers while preserving
a frozen backbone. Noteworthy advancements in accuracy
have been documented in certain studies. Our investiga-
tion delved deeply into a representative approach, DETReg,
and its performance assessment in the context of emerging
models like H-Deformable-DETR. Regrettably, DETReg
proves inadequate in enhancing the performance of robust
DETR-based models under full data conditions. To dissect
the underlying causes, we conduct extensive experiments
on COCO and PASCAL VOC probing elements such as
the selection of pre-training datasets and strategies for pre-
training target generation. By contrast, we employ an op-
timized approach named Simple Self-training which leads
to marked enhancements through the combination of an im-
proved box predictor and the Objects365 benchmark. The
culmination of these endeavors results in a remarkable AP
score of 59.3% on the COCO val set, outperforming H-
Deformable-DETR + Swin-L without pre-training by 1.4%.
Moreover, a series of synthetic pre-training datasets, gen-
erated by merging contemporary image-to-text(LLaVA) and
text-to-image (SDXL) models, significantly amplifies object
detection capabilities.

Keywords Object detection, DETR, Pre-training

1 Introduction

Recently, the DETR-based approaches (Carion et al., 2020;
Jia et al., 2023; Li et al., 2023; Zhang et al., 2022;
Zhu et al., 2020) have achieved significant progress and
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pushed the frontier on both object detection and segmen-
tation tasks. For example, DINO-DETR (Zhang et al.,
2022), H-Deformable-DETR (Jia et al., 2023), and Group-
DETRv2 (Chen et al., 2022) have set new state-of-the-art
object detection performance on COCO benchmark. Mask-
DINO (Li et al., 2023) further extends DINO-DETR and es-
tablishes the best results across COCO instance segmenta-
tion and panoptic segmentation tasks. To some degree, this
is the first time that end-to-end transformer approaches can
achieve an even better performance than the conventional
heavily tuned strong detectors (Li et al., 2021; Liu et al.,
2022b) based on convolution, e.g., Cascade Mask-RCNN
and HTC++.

Despite the great success of these DETR-based ap-
proaches, they still choose a randomly initialized Trans-
former and thus fail to unleash the potential of a fully pre-
trained detection architecture like (Wei et al., 2021), which
already verifies the benefits of aligning the pre-training
architecture with the downstream architecture. Figure 1a
and 1b illustrate the distribution of the number of parameters
and GFLOPs within a standard Deformable-DETR network
based on ResNet50 backbone. We can see that the Trans-
former encoder and decoder occupy 34% of the parameters
and 65% of the GFLOPs, which means there exists much
room for improvement along the path of performing pre-
training on the Transformer part within DETR.

Several recent works have improved DETR-based ob-
ject detection models by performing self-supervised pre-
training on the Transformer encoder and decoder while
freezing the backbone. For example, UP-DETR (Dai et al.,
2021) pre-trains Transformer to detect random patches in
an image, DETReg (Bar et al., 2022) pre-trains Transformer
to match object locations and features with priors gener-
ated from Selective Search algorithm, and most recently,
Siamese DETR locates the target boxes with the query fea-
tures extracted from a different view’s corresponding box.
However, these works utilize either the vanilla DETR net-
work (AP=42.1% in terms of object detection performance
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Fig. 1: The distribution of the number of parameters and
GFLOPs within Deformable-DETR network with a ResNet50
backbone, and the pre-training performance of DETReg. As shown
in (a) and (b), we can see that around 34% parameters and 65%
GFLOPs are distributed in the randomly initialized Transformer en-
coder and decoder. According to (c), DETReg only improves the
vanilla DETR and Deformable-DETR by +1.6% and +0.3% while
showing no gains over the stronger H-Deformable-DETR.

on COCO) or the Deformable-DETR variant (AP=45.2%).
Their results fall significantly short when pre-training on
the latest much stronger DETR model like H-Deformable-
DETR (Jia et al., 2023) (AP=49.6%). In Figure 1c, we
present the object detection results of different DETR mod-
els on COCO under two conditions: without pre-training
of the Transformer component (referred to as the baseline)
and with pre-training using the DETReg method. In both
cases, the backbones of these models are ResNet50 initial-
ized with SwAV (Caron et al., 2020). Notably, in the case
of the H-Deformable-DETR, the utilization of the DETReg
pre-training actually leads to a performance decrease rather
than an improvement.

In this work, we first take a closer look at how much
self-supervised pre-training methods, exemplified by DE-
TReg, can improve over the increasingly potent DETR mod-
els on COCO object detection benchmark. Our investiga-
tion unveils a significant limitation in the efficacy of DE-
TReg when applied to fortified DETR networks bolstered
by improvements like the SwAV pre-trained backbone, de-
formable techniques in Deformable-DETR, and the hybrid
matching scheme in H-Deformable-DETR. We pinpoint the
crux of the issue as originating from unreliable box pro-
posals generated by unsupervised methods like Selective
Search, which contribute to noisy localization targets, and

the weak semantic information provided through feature
reconstruction which is not an efficient classification tar-
get either. These drawbacks make the self-supervised pre-
training methods ineffective when applied to an already
strong DETR model.

To fix this, we propose to use a COCO object de-
tector to get more accurate pseudo-boxes with informa-
tive pseudo-class labels. Extensive ablation experiments un-
derscore the impact of three pivotal factors: the choice
of pre-training datasets (ImageNet vs. Objects365), local-
ization pre-training targets (Selective Search proposals vs.
pseudo-box predictions), and classification pre-training tar-
gets (object-embedding vs. pseudo-class predictions).

Our findings reveal that a Simple Self-training scheme,
employing pseudo-box and pseudo-class predictions as
pre-training targets, outperforms the DETReg approach in
various settings. Notably, this simple design yields dis-
cernible pre-training enhancements even for the state-of-the-
art DETR network without accessing the pre-training bench-
mark’s ground-truth label. For example, with a ResNet50
backbone and the Objects365 pre-training dataset, Simple
Self-training elevates DETReg’s COCO object detection re-
sults on H-Deformable-DETR by 3.6%. Furthermore, a re-
markable performance is observed with the Swin-L back-
bone, yielding competitive results 59.3%.

Additionally, we delve into an exploration of contem-
porary image-to-text and text-to-image generation models,
aiming to create a sequence of synthetic datasets for ob-
ject detection pre-training. Empirically, our observations
yield encouraging outcomes, as pre-training with these
synthetic datasets demonstrates commendable performance
even when compared against the widely adopted Objects365
benchmark, which entails substantial annotation costs. In
general, our efforts are poised to provide a more authentic
assessment of the progress in the formidable task of DETR
pre-training.

2 Related Work

DETR for object detection. Since the emergence of
DETR (Carion et al., 2020) as the first fully end-to-end
object detector, many works have extended DETR with
novel techniques to achieve state-of-the-art results on var-
ious vision tasks. To accelerate the convergence of the origi-
nal DETR, Deformable-DETR (Zhu et al., 2020) proposes
a novel multi-scale deformable self/cross-attention to fo-
cus on a sparse set of important sampling points around a
reference point. Furthermore, based on DAB-DETR (Liu
et al., 2022a) with a different query formulation, DINO-
DETR (Zhang et al., 2022) introduces a query denoising
scheme and sets new records on object detection tasks. Be-
sides, to address the training efficiency bottleneck caused by
one-to-one matching in DETR, H-Deformable-DETR (Jia
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et al., 2023) and Group-DETR (Chen et al., 2022) propose
to train with more queries in the transformer decoder with
an additional one-to-many matching scheme, which helps to
achieve even faster convergence and better performance.

Self-supervised pre-training. Self-supervised learning
(SSL) has achieved remarkable results in image classifi-
cation methods such as MoCo (He et al., 2020), Sim-
CLR (Chen et al., 2020), and BYOL (Grill et al., 2020).
However, SSL on object detection has shown limited trans-
ferability. To overcome this challenge, many works have
proposed pretext tasks that leverage region or pixel local-
ization cues to enhance the pre-training signals. For exam-
ple, InsLoc (Yang et al., 2021a) uses contrastive learning
on foreground patches to learn instance localization. Uni-
VIP (Li et al., 2022) exploits scene similarity, scene-instance
correlation, and instance discrimination to capture semantic
affinity. CP2 (Wang et al., 2022) employs pixel-wise con-
trastive learning to facilitate both image-level and pixel-
level representation learning. Unlike most of these meth-
ods that aim to improve conventional object detectors such
as Faster R-CNN or Cascade R-CNN, we focus on design-
ing an effective pre-training scheme for the state-of-the-art
DETR-based detector.

DETR pre-training. DETR typically relies on a super-
vised pre-trained backbone on ImageNet and random ini-
tialization of the transformer encoder and decoder. Some
recent works have explored pre-training the transformer
component of DETR for enhanced object detection perfor-
mance. For example, UP-DETR (Dai et al., 2021) introduces
an unsupervised pretext task to detect and reconstruct ran-
dom patches of the input. DETReg (Bar et al., 2022) re-
fines the pretext task by using unsupervised region proposals
from Selective Search (Uijlings et al., 2013) instead of ran-
dom patches and also reconstructs the object embeddings of
these regions from its SwAV (Caron et al., 2020) backbone
to learn invariant representations. Siamese DETR (Huang
et al., 2023) employs a siamese self-supervised learning ap-
proach to pre-train DETR in a symmetric pipeline where
each branch takes one view as input and aims to locate
and discriminate the corresponding regions from another
view. However, these pre-training methods only yield minor
improvements to a strong DETR variant like Deformable-
DETR.

Self-training. Self-training is a powerful technique for
improving various computer vision tasks, such as image
classification (Li et al., 2023; Sahito et al., 2022), object de-
tection (Vandeghen et al., 2022; Yang et al., 2021b), and
segmentation (Zhu et al., 2021). A common self-training
method is NoisyStudent (Xie et al., 2020), which trains a
teacher model on labeled data and uses it to generate pseudo-
labels on unlabeled images. These pseudo-labels are then

used to train a student model, and this process is repeated
to obtain better models by updating the teacher model with
the previous student model. The ASTOD (Vandeghen et al.,
2022) framework applies an iterative self-training process
for object detection, using multiple image views to produce
high-quality pseudo-labels. ST++(Yang et al., 2022) is a re-
cent self-training algorithm for segmentation tasks, which
uses confidence scores to filter out incorrect pseudo-labels.
(Zoph et al., 2020) has demonstrated that self-training out-
performs traditional pre-training methods in various scenar-
ios, including low and high data regimes, and can even suc-
ceed when pre-training methods fail. Unlike these complex
self-training schemes that use an iterative approach to refine
pseudo-labels, we propose a Simple Self-training scheme
that generates pseudo-labels only once by keeping a fixed
number of the most confident predictions.

3 Approach

In this work, we focus on studying how to perform pre-
training over the Transformer encoder and decoder parts
within DETR for object detection tasks following (Bar et al.,
2022; Dai et al., 2021). The goal of DETR pre-training is to
design an effective pretext task that can make the best use
of a large-scale unlabeled dataset that has no ground-truth
bounding box annotations.

3.1 Formulation

The conventional DETR model has three components,
the backbone extracting the image feature, the encoder en-
hancing the feature with a self-attention mechanism, and the
decoder turning query inputs into object class and location
predictions through cross-attention with image features. The
existing self-supervised pre-training methods share a simi-
lar scheme that optimizes the encoder and decoder network
parameters on the pre-training dataset while freezing a pre-
trained backbone. After pre-training, all three components
are tuned together on the downstream dataset. The pipeline
is illustrated in Figure 2.

Preliminary. In the following article, we formulate the
general self-supervised pre-training process as several equa-
tions. We use fθB , fθE , fθD to represent the backbone, Trans-
former encoder, and Transformer decoder within a DETR
network parameterized by θB, θE, and θD. The input im-
ages from the pre-training and downstream dataset are de-
noted as X = {x1, · · · ,xN} and X = {x1, · · · ,xM} re-
spectively, where N≫M . The ground-truth label of down-
stream data is Y={y1, · · · ,yM |yi=(ci,bi)}, where ci is
the category label and bi is the box location label. Typi-
cally, the domain-specific pre-training data labels are lack-
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Fig. 2: The overall framework of self-supervised pre-training scheme. There are two steps to pre-train the DETR network. In the first step, we
freeze the backbone and pre-train a randomly initialized Transformer encoder and decoder with the well-designed pre-training target on a large-
scale pre-training benchmark. In the second step, we initialize the encoder and decoder with pre-trained weights and fine-tune all the parameters
of the DETR network on the downstream dataset supervised by ground-truth labels.

ing and most works choose to generate the pseudo-labels,
i.e., Y = {y1, · · · ,yN} instead.

Pre-train. We illustrate the mathematical formulations of
the DETR pre-training with Equation 1 and 2. Specifically,
the pre-training input xi is forwarded through the back-
bone fθB , encoder fθE , and decoder fθD to get the predic-
tion zi. Here θB, θE, θD represent the learnable parameters
for the three network components respectively. θB is initial-
ized with SwAV (Caron et al., 2020) self-supervised pre-
training method and frozen during pre-training. θE and θD
are randomly initialized and then optimized to minimize the
pre-training loss Lpre(·), which is calculated with network
output zi and pre-training target yi.

zi = fθD(fθE(fθB(xi)),Q), (1)

θ̂D, θ̂E, Q̂ = argmin
θD,θE,Q

N∑
i=1

Lpre(zi,yi), (2)

where Q = {q1, · · · ,qk} represents the learnable object
query of decoder and will also be jointly optimized with
the encoder/decoder parameters. θ̂D, θ̂E, Q̂ represent the de-
coder parameters, encoder parameters, and object query af-
ter pre-training. In the following section 3.2, we will illus-
trate the formulation of Lpre in different methods.

Fine-tune. We obtain the optimized encoder and decoder
parameter θ̂E, θ̂D during pre-training. Then we tune the same
network on the downstream data xi. Here, we initialize the
backbone, encoder and decoder parameter with θB, θ̂E, θ̂D,
and denote the network output as zi. All parameters of the
three components and learnable query Q are optimized to
minimize the downstream loss Lds(·) between zi and down-
stream label yi.

zi = fθ̂D(fθ̂E(fθB(xi)), Q̂), (3)

θ̃D, θ̃E, θ̃B, Q̃ = argmin
θ̂D,θ̂E,θB,Q̂

M∑
i=1

Lds(zi,yi), (4)

where θ̃D, θ̃E, θ̃B, Q̃ are optimized decoder, encoder, back-
bone parameters, and object query after downstream fine-
tuning.

3.2 Instantiations

Assume the target of the i-th pre-training input can be
denoted as yi = {yi1, · · · ,yim}, where m is the number
of objects in each target. The network output consists of k
bounding box predictions, which is the same as the number
of object queries. We denote the corresponding prediction
as zi = {zi1, · · · , zik}. Typically, the number of targets in
yi is less than 30, while we set our DETR network to out-
put 100 or 300 predictions, so m < k. Thus we pad the
targets with no-object category ∅ following DETR (Car-
ion et al., 2020) to be of size k. Then, DETR performs
one-to-one alignment via Hungarian bipartite matching al-
gorithm (Kuhn, 1955) over yi and zi. We illustrate the math-
ematical formulation in Equation 5, which computes the op-
timal label assignment for each prediction by minimizing
the matching cost function Lmatch(·):

σi = argmin
σi∈Σk

k∑
j=1

Lmatch(yij , ziσi(j)), (5)

where Σk represents all permutations over k elements and
σi(j) maps the targeted box j to the most similar pre-
dicted box within the i-th input. The matching cost function
Lmatch(·) measures the predictions from two aspects includ-
ing the localization accuracy and classification accuracy fol-
lowing DETR (Carion et al., 2020).

Most self-supervised pre-training methods differentiate
through the design of pretext tasks, which results in differ-
ent structures for the pre-training target yi and implementa-
tions of the pre-training loss Lpre. A good pretext task design
can improve the final prediction performance. In the follow-
ing, we first introduce the instantiation of a representative
method called DETReg (Bar et al., 2022). Then, we pro-
pose two more effective pre-training schemes: DETReg +
Pseudo-box and Simple Self-training. Both methods focus
on enhancing the localization and classification pre-training
target quality. We compare the pre-training pipeline of three
methods in Figure 3.

DETReg. DETReg uses an unsupervised region proposal
method named Selective Search (ss) to generate the tar-
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get boxes. The j-th “box proposal” for the i-th input is
denoted as b

ss

ij ∈ [0, 1]4. We select the top k Selective
Search box proposals {bss

i1 , · · · ,b
ss

ik} and pair them with
the binary category target padded to the size of network
query number k (k > k) {pss

i1 , · · · ,pss
ik |pss

i1 , · · · ,pss
ik

=

1,pss
i(k+1)

, · · · ,pss
ik = 0}, where pss

ij = 1 indicates the el-
ement is a box proposal while pss

ij = 0 indicates a padded
∅. To compensate for the lack of semantic information in
the binary category, the DETReg network incorporates an-
other object embedding reconstruction branch to predict the
object embeddings {f i1, · · · , f ik|f ij ∈ Rd} of detected
boxes, which is supervised by the target object descriptor
{f swav

i1 , · · · , f swav
ik } with f

swav
ij indicating the object embed-

ding extracted from the image patch in the j-th box proposal
on the i-th input with a fixed SwAV backbone. Therefore,
the pre-training target and network prediction are denoted
as Equation 6:

yij = (pss
ij ,b

ss

ij , f
swav
ij ), zij = (pij ,bij , f ij). (6)

The pre-training loss is the sum of binary classification
loss Lbin

cls (·), box loss Lbox(·), and embedding loss Lemb(·)
through all k outputs as below:

Lpre(yi, zi) =

k∑
j=1

λcLbin
cls (p

ss
ij ,piσi(j))

+ λb1{pss
ij ̸=0}Lbox(b

ss

ij ,biσi(j))

+ λeLemb(f
swav
ij , f iσi(j)),

(7)

where Lbin
cls (·) is the binary classification loss which can be

implemented as Cross Entropy Loss or Focal Loss. Lbox(·)
is the sum of L1 and GIoU Loss, and Lemb(·) is the L1 Loss.
λc, λb, and λe are loss coefficients and σi(j) maps the target
box j to the assigned predicted box σi(j) with lowest cost
within the i-th input.

DETReg + Pseudo-box. The unsupervised box propos-
als like Selective Search boxes are of very low quality.
To handle this, we employ two off-the-shelf well-trained
COCO object detectors to predict the pseudo-boxes for the
pre-training data to replace the Selective Search proposals.
Specifically, we replace the (pss

ij ,b
ss

ij ) in Equation 6 and 7

with (ppseudo
ij ,b

pseudo
ij ). We use H-Deformable-DETR with

ResNet50 or Swin-L backbone as our detector network. We
first train them on COCO, then use the trained detector to
predict pseudo-boxes on the pre-training dataset, and the
top 30 predictions are selected as k.

Simple Self-training. We further replace the binary cat-
egory target ppseudo

ij with category predictions cpseudo
ij ∈

{∅, c1, · · · , cn} of aforementioned COCO object detectors
as the classification target and remove f

swav
ij since we already

have detailed class information. Due to that the detector is

Localization method AP AP50 AP75 APS APM APL AR@10 AR@30 AR@100

Selective Search 0.5 1.6 0.2 0.2 0.3 1.2 3.7 8.3 15.5

H-Deformable-DETR + R50 28.4 40.4 30.2 12.7 26.7 43.1 26.5 37.4 47.7

H-Deformable-DETR + Swin-L 30.7 41.3 33.0 15.2 29.0 44.9 28.1 38.5 47.4

Table 1: Objects356 AP and AR score for Selective Search box
proposals, and pseudo-box predictions of H-Deformable-DETR-based
COCO detectors with R50 and Swin-L backbone.

trained on COCO and the pseudo-category labels it predicts
are the 80 COCO categories, the binary classification turns
into a multiclass classification. The formulation is shown be-
low:

yij = (cpseudo
ij ,b

pseudo
ij ), zij = (cij ,bij), (8)

Lpre(yi, zi) =

k∑
j=1

λcLmul
cls (c

pseudo
ij , ciσi(j))

+ λb1{cpseudo
ij ̸=∅}Lbox(b

pseudo
ij ,biσi(j)),

(9)

where Lmul
cls (·) is the multiclass classification loss.

3.3 Discussion

We utilize ImageNet and Objects365 as the two pre-
training benchmarks. To display the quality of Selective
Search proposals and pseudo-boxes generated by two off-
the-shelf COCO object detectors, we report their boxes’ Av-
erage Precision and Average Recall on Objects365 valida-
tion set in Table 1. As can be seen, pseudo-boxes generated
by COCO object detectors are far more accurate than Selec-
tive Search boxes. We also visualize their box proposals in
Figure 4.

Unlike the conventional self-training scheme (Xie et al.,
2020; Zoph et al., 2020) that relies on applying complicated
augmentation strategy to boost the quality of pseudo-labels,
adjusting NMS threshold carefully, and re-generating more
accurate pseudo-labels based on the fine-tuned models in an
iterative manner, our Simple Self-training method directly
generate the pseudo-labels for one time without those tricks,
resulting in a much simpler approach.

4 Experiment

4.1 Implementation Details

Datasets. Our object detection network is pre-trained on
the ImageNet or Objects365 (Shao et al., 2019) bench-
mark, then fine-tuned on COCO train2017 and evaluated
on COCO val2017, or fine-tuned on PASCAL VOC train-
val07+12 and evaluated on PASCAL VOC test2007. For the
pre-training benchmarks, ImageNet has 1.2 Million images
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Fig. 3: The pre-training pipelines of DETReg, DETReg+pseudo-box, and Simple Self-training. In DETReg and DETReg+pseudo-box, we
use an extra frozen backbone branch to get the target object embeddings from the image crops. The binary-class outputs of the Transformer predict
whether the detected boxes contain an object.

Ground-Truth Selective Search H-Def-DETR + R50 H-Def-DETR + Swin-L

Fig. 4: Qualitative comparisons of the top 30 generated bounding
boxes of different methods on Objects365. The methods include Se-
lective Search and trained H-Deformable-DETR detectors with R50 or
Swin-L backbones.

which mostly contain one object since the dataset is cre-
ated for classification. Objects365 is a large-scale dataset for
object detection with 2 Million images. The image scene
is more complicated with around 15 ground-truth bound-
ing boxes per image on average. We use Objects365 as the
default pre-training benchmark for all experiments in sec-
tions 4.2 and 4.4, as its complex scenes bring better pre-
training performance for the Simple Self-training approach.

Architectures. We use two kinds of DETR backbones in-
cluding ResNet50 which is self-supervised pre-trained by
SwAV on ImageNet and Swin-L which is supervised pre-
trained on ImageNet. We pre-train three DETR-based ar-
chitectures in Section 4.3 including vanilla DETR (Car-
ion et al., 2020), Deformable-DETR (Zhu et al., 2020),
and H-Deformable-DETR (Jia et al., 2023), which is a
recent state-of-the-art object detector based on a combi-
nation of an improved Deformable-DETR and an effec-
tive hybrid matching scheme. The Transformer module
in those architectures is composed of 6 encoder layers
and 6 decoder layers. The vanilla DETR and Deformable-
DETR are plain without tricks, while H-Deformable-DETR
is improved with iterative bounding box refinement, two-
stage (Zhu et al., 2020), mixed query selection, and look
forward twice scheme (Zhang et al., 2022). By default, we
use H-Deformable-DETR with ResNet50 backbone for the
ablation study.

Training. We pre-train the network on ImageNet for 5

epochs following DETReg or on Objects365 for 3 epochs to
ensure the same iteration number according to their different
dataset sizes. For fine-tuning, we train for 150 epochs with
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Method Framework Backbone #epoch AP AP50 AP75 APS APM APL

Swin (Liu et al., 2021) HTC Swin-L 36 57.1 75.6 62.5 42.4 60.7 71.1

Group-DETR (Chen et al., 2022) DETR Swin-L 36 58.4 - - 41.0 62.5 73.9

DINO-DETR (Zhang et al., 2022) DETR Swin-L 36 58.5 77.0 64.1 41.5 62.3 74.0

H-Deformable-DETR (Jia et al., 2023) DETR Swin-L 36 57.9 76.9 63.7 42.4 61.9 73.4

Ours (pre-trained H-Deformable-DETR) DETR Swin-L 24 59.3 77.9 65.1 44.1 62.9 73.6

Table 2: System-level comparisons with the state-of-the-art DETR-
based single-scale evaluation results on COCO val set.

Method DETR model Pretrain #query #epoch AP AP50 AP75 APS APM APL

from scratch DETR - 100 150 40.3 61.3 42.2 18.2 44.6 60.5

DETReg DETR ImageNet 100 150 40.2 60.7 42.3 17.6 44.3 59.6

ours DETR ImageNet 100 150 41.9 62.7 44.0 20.7 46.0 62.8

from scratch DDETR-MS - 300 50 45.2 64.2 49.4 27.2 49.3 59.1

DETReg DDETR-MS ImageNet 300 50 43.5 61.4 47.3 24.2 47.1 58.7

ours DDETR-MS ImageNet 300 50 46.0 64.4 50.0 26.6 49.8 61.5

from scratch H-DDETR-MS - 300 12 49.6 67.5 54.1 31.9 53.3 64.1

DETReg H-DDETR-MS ImageNet 300 12 49.5 66.8 53.9 30.5 53.5 63.6

ours H-DDETR-MS ImageNet 300 12 51.6 69.4 56.4 35.0 55.3 66.8

Table 3: Comparisons with self-supervised pre-training method DE-
TReg on the COCO downstream benchmark.

Method DETR model Pretrain #query #epoch AP AP50 AP75 APS APM APL

from scratch DETR - 100 150 56.3 80.3 60.6 10.2 36.0 65.9

DETReg DETR ImageNet 100 150 60.9 82.0 65.9 15.1 40.8 69.8

ours DETR ImageNet 100 150 63.5 83.8 68.6 22.5 44.3 72.1

from scratch DDETR-MS - 300 50 61.1 83.1 68.0 25.5 47.4 67.7

DETReg DDETR-MS ImageNet 300 50 63.6 82.6 70.2 27.5 49.7 70.2

ours DDETR-MS ImageNet 300 50 67.8 85.4 75.5 30.9 54.7 74.4

from scratch H-DDETR-MS - 300 12 63.8 82.4 70.0 26.5 50.0 70.4

DETReg H-DDETR-MS ImageNet 300 12 67.7 84.5 74.9 35.1 55.1 74.7

ours H-DDETR-MS ImageNet 300 12 71.6 87.0 79.2 33.1 60.3 78.2

Table 4: Comparisons with self-supervised pre-training method DE-
TReg on the PASCAL VOC downstream benchmark.

Method Pre-training dataset AP AP50 AP75 APS APM APL

DETReg
ImageNet 49.5 66.8 53.9 30.5 53.5 63.6

O365 49.2 66.5 53.6 31.4 53.2 63.5

DETReg+pseudo-box
ImageNet 50.9 68.3 55.7 33.6 54.6 64.9

O365 52.0 69.6 56.7 36.1 55.9 65.3

Simple Self-training
ImageNet 51.6 69.4 56.4 35.0 55.3 66.8

O365 52.8 70.9 57.6 37.0 56.6 67.3

Table 5: Effect of pre-training dataset choices.

vanilla DETR, 50 epochs with Deformable-DETR, and 12
epochs with H-Deformable-DETR, or 24 epochs with H-
Deformable-DETR in Section 4.2 for better performance.
The learning rate drops at 120/150, 40/50, 11/12, and
20/24 respectively. The batch size for pre-training and fine-
tuning are both 16.

Metrics. We measure the object detection accuracy for the
top 100 detected bounding boxes. Specifically, we compute
AP, AP50 and AP75 as the average precision when using
IoU thresholds across the range of 0.50 to 0.95, and exactly

Method Localization target Classification target AP AP50AP75APSAPMAPL

from scratch - - 49.6 67.5 54.1 31.9 53.3 64.1

DETReg Selective Search Object-embedding loss 49.2 66.5 53.6 31.4 53.2 63.5

DETReg+pseudo-boxPseudo-box prediction Object-embedding loss 52.0 69.6 56.7 36.1 55.9 65.3

Simple Self-training Pseudo-box predictionPseudo-class prediction 52.8 70.9 57.6 37.0 56.6 67.3

Supervised Ground-truth Ground-truth 53.2 71.5 58.1 37.3 57.0 67.4

Table 6: Fine-tuning results on COCO after pre-training with differ-
ent methods using various localization and classification pre-training
targets on Objects365.

Method AP AP50 AP75 APS APM APL

from scratch 63.8 82.4 70.0 26.5 50.0 70.4

DETReg 67.7 84.7 74.1 34.8 55.9 74.3

DETReg+pseudo-box 71.6 87.0 79.1 36.1 59.0 77.9

Simple Self-training 71.6 87.9 79.7 33.5 60.2 78.7

Supervised 72.6 88.0 80.7 37.6 62.6 78.6

Table 7: Fine-tuning results on PASCAL VOC after pre-training with
different methods on Objects365.

#pseudo-box AP AP50 AP75 APS APM APL

30 52.0 69.6 56.7 36.1 55.9 65.3

60 51.6 69.1 56.6 34.8 55.4 65.5

100 51.5 68.9 56.3 34.9 54.7 65.4

Table 8: Ablation experiments on the number of pseudo-boxes for the
DETReg+pseudo-box method.

Method Encoder Decoder AP AP50 AP75 APS APM APL

DETReg+pseudo-box
✓ ✓ 52.0 69.6 56.7 36.1 55.9 65.3

✓ 49.4 67.1 53.5 32.0 53.2 63.2
✓ 51.5 69.6 56.1 35.4 55.3 65.5

Simple Self-training
✓ ✓ 52.8 70.9 57.6 37.0 56.6 67.3

✓ 50.2 68.2 54.3 32.4 54.1 63.6
✓ 51.8 69.6 56.4 34.9 55.4 66.6

Table 9: Effect of Transformer encoder or decoder pre-training.

of 0.50 or 0.75; and also APS , APM , APL as the AP for
small, medium, large bounding boxes.

4.2 Comparison to the State-of-the-art

Table 2 shows the object detection result on COCO val-
idation set of H-Deformable-DETR network pre-trained on
Objects365 benchmark with our method in comparison with
other state-of-the-art object detection systems. Our Simple
Self-training approach significantly boosts the performance
of H-Deformable-DETR from 57.9% to 59.3% with fewer
training epochs. We expect our approach to achieve better
results with bigger batch size and epoch number, for in-
stance, batch size of 256 and epoch of 60 are used for the
self-supervised pre-training in Siamese DETR (Huang et al.,
2023).

4.3 Results on different DETR architectures

As shown in Table 3 and Table 4, we display the results
of DETReg and Simple Self-training with different DETR
architectures on the COCO and PASCAL VOC benchmarks.



8 Ma et al.

5% 10% 25% 50%
0

5

10

15

20

+3.0 +3.1

+1.7
+1.0

+9.9

+8.5

+4.2

+2.1

+18.9

+15.2

+8.3

+3.1

Labeled Data (%)

A
P

(%
)

Proportion of agents in households

DETReg
DETReg+pseudo box
simple self-training

Fig. 5: Ablation experiments on low-data regimes. The value shows
the performance improvement of three pre-training schemes compared
to the from scratch baseline.

The line of from scratch shows the baseline results with-
out pre-training as the ResNet50 backbone is initialized with
SwAV and the Transformer is randomly initialized. The re-
sults show that with the reported experiment setting, the DE-
TReg pre-training fails to bring improvement to the from
scratch baseline on the COCO benchmark, while can get
small gains on the PASCAL VOC benchmark. Our Sim-
ple Self-training can effectively improve the baseline per-
formance for all three DETR architectures on both bench-
marks.

4.4 Ablation Experiments and Analysis

Choice of pre-training dataset. We also investigate the
impact of pre-training datasets with the H-Deformable-
DETR architecture in Table 5. Compared to ImageNet, pre-
training with the Objects365 benchmark yields better per-
formance with the DETReg+pseudo-box and Simple Self-
training approach, which is not the case with the DE-
TReg approach. As DETReg+pseudo-box and Simple Self-
training employ accurate pseudo-boxes of COCO detec-
tors as the pre-training targets, they can benefit from a
more complex image scene that contains richer objects like
Objects365, while Selective Search’s chaotic proposals on
Objects365 may not be better localization targets than its
proposals on ImageNet. It has been proved that ImageNet
is a good benchmark for pre-training general representa-
tion ability, which can be transferred to multiple down-
stream tasks. However, for pre-training a specific detec-
tion network, a large-scale object detection benchmark like
Objects365 is more helpful if the pseudo-box has good qual-
ity. Therefore, we use Objects365 as the default pre-training
benchmark for the following studies.

Pre-training methods. We present the downstream re-
sults on the COCO benchmark of the from scratch and dif-

ferent pre-training methods in Table 6 and results on the
PASCAL VOC benchmark in Table 7. All methods ex-
cept from scratch are pre-trained on the Objects365 bench-
mark. The middle three pre-training methods do not uti-
lize Objects365 ground-truth labels, while the last is su-
pervised by ground-truth and thereby serves as an upper
bound. The difference between the three unsupervised pre-
training pipelines is illustrated in Figure 3. As shown in
the Table 6 and 7, the DETReg+pseudo-box method builds
upon DETReg and improves its localization targets by utiliz-
ing more accurate COCO detector pseudo-boxes, leading to
significant improvement. The Simple Self-training method
discards the object-embedding loss and instead supervises
the multi-class classification head with the class predic-
tions of COCO detectors, resulting in further performance
gains. For the supervised method, we replace the pseudo-
box and pseudo-class targets in the Simple Self-training with
ground-truth and achieve an upper-bound performance that
is only slightly better than our Simple Self-training strategy.
This step-by-step comparison demonstrates how we can pro-
gressively improve the pre-training performance by intro-
ducing better localization and classification targets. Addi-
tionally, we observe that better localization pre-training tar-
gets are more impactful than better classification targets for
object detection tasks.

Pseudo-box Number. In Table 8, we ablate with the num-
ber of pseudo-boxes in the DETReg + pseudo-box method.
We observe that using more than 30 pseudo-boxes for pre-
training does not improve the performance, despite more
pseudo-boxes exhibiting higher recall on the ground-truth
(as shown in Table 1, where AR@10, 30, 100 means AR
with 10, 30, 100 proposed boxes) and providing more su-
pervision signals. A possible explanation is that each Ob-
jects365 image contains approximately 15 box annotations,
and the predictions beyond the top 30 may have low confi-
dence and less meaningful information, as a result of incor-
porating noise into the pseudo-box target.

Encoder/Decoder Pre-training. We evaluate the impor-
tance of Transformer encoder and decoder pre-training
in the DETReg+pseudo-box and Simple Self-training ap-
proaches in Table 9. We first report the performance of us-
ing both the encoder and decoder pre-trained parameters,
then we report the results of only loading the encoder or
decoder pre-trained parameters and random initializing the
other part. In both pre-training approaches, we observe that
the encoder pre-training contributes more than the decoder
pre-training, which is reasonable considering the high ratio
of encoder GFLOPs shown in 1b.

Fine-tuning dataset size. We investigate the effectiveness
of three pre-training schemes compared to training from
scratch when only a limited amount of data is available for
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Text prompt Gernerative model Pretraining dataset Localization target Classification target
COCO PASCAL VOC

AP AP50 AP75 AP AP50 AP75

- - O365 Pseudo-box prediction Pseudo-class prediction 52.8 70.9 57.6 71.6 87.9 79.7

COCO captions ControlNet Control-COCO 2M Ground-truth Ground-truth 51.1 69.2 55.8 71.7 87.8 79.2

COCO captions ControlNet Control-COCO 2M Pseudo-box prediction Pseudo-class prediction 52.6 70.6 57.5 72.0 87.8 80.4

LLaVA captions ControlNet LLaVAControl-COCO 2M Ground-truth Ground-truth 50.7 69.6 55.4 71.6 87.5 79.5

LLaVA captions ControlNet LLaVAControl-COCO 2M Pseudo-box prediction Pseudo-class prediction 52.9 70.8 57.9 72.3 87.7 80.4

COCO captions SDXL SDXL-COCO 2M Pseudo-box prediction Pseudo-class prediction 52.5 70.7 57.3 72.1 87.6 79.7

LLaVA captions SDXL SDXL-COCO 2M Pseudo-box prediction Pseudo-class prediction 52.9 71.0 58.0 72.0 87.6 80.1

Table 10: Evaluation results of pre-training with synthetic images similar to COCO generated by text-to-image generative models ControlNet
and SDXL. The text prompts given to the generative models are COCO ground-truth captions (represented as COCO captions) or the generated
captions by the large multimodal model LLaVA based on COCO images (represented as LLaVA captions).

Text prompt Gernerative model Pretraining dataset Localization target Classification target
COCO PASCAL VOC

AP AP50 AP75 AP AP50 AP75

LLaVA captions ControlNet LLaVAControl-O365 2M Pseudo-box prediction Pseudo-class prediction 52.4 70.5 57.2 71.8 87.6 79.8

LLaVA captions SDXL SDXL-O365 2M Pseudo-box prediction Pseudo-class prediction 52.6 70.6 57.6 71.6 87.4 79.3

Table 11: Evaluation results of pre-training with synthetic images similar to Objects365 generated by ControlNet and SDXL. Since Objects365
does not have ground-truth captions, the text prompts given to the generative models are generated captions by LLaVA based on Objects365
images (represented as LLaVA captions).

fine-tuning in Figure 5. Specifically, we fine-tune the pre-
trained network on 5%, 10%, 25%, and 50% of the COCO
training set and evaluate it on the full COCO validation set.
All three pre-training schemes greatly speed up the conver-
gence. We observe that DETReg only yields slightly higher
performance than random initialization. The Simple Self-
training approach remains the most effective, particularly
when only a very small amount of data (5%) is available.

Qualitative analysis. Without fine-tuning, we visualize
the discriminability scores (Zong et al., 2022) of the pre-
trained encoder in Figure 6 to investigate what the encoder
has learned in pre-training. From the figures, we can see that
DETReg’s feature discriminability is seriously disturbed by
the background. However, when we utilize improved local-
ization and classification targets in the DETReg+pseudo-
box and Simple Self-training approach, finer details are
captured. Notably, the Simple Self-training method demon-
strates performance that is almost on par with pre-training
using ground-truth.

We also visualize the deformable cross-attention of the
pre-trained decoder in Figure 7. The colored dots in the
image represent the sampling points from all resolution
scales, where the color indicates the attention weights, with
a lighter color indicating higher attention. As random ini-
tialization shows, the initial key points are sampled radially
from the center to the edge. All pre-training methods learn

to scatter the sampling points across the entire object of in-
terest with different patterns, while the Simple Self-training
pre-trained decoder can sample key points from an accurate
range of objects and distribute attention weight more effec-
tively.

4.5 Results with synthetic data generated by T2I

Last, we investigate the effectiveness of pre-training
with synthetic data, which is generated using recent large-
scale text-to-image generation models. Specifically, we
leverage two representative text-to-image models, Control-
Net (Zhang and Agrawala, 2023) and SDXL (Podell et al.,
2023), to generate images. These models take original cap-
tions from the COCO dataset or captions generated by
LLaVA (Liu et al., 2023) as prompts for image synthesis.
ControlNet uses predicted depth maps from DPT (Ranftl
et al., 2021) as conditional input to generate images that
match both the depth maps and captions. On the other hand,
SDXL generates images solely based on the provided cap-
tions without any additional conditions. We create a syn-
thetic dataset comprising 2.3 Million generated images. Fig-
ure 8 displays some examples.

Upon analyzing the images produced by ControlNet, we
find that they closely resemble the layout of the original
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Image Random initialization DETReg DETReg+ Pseudo-box Simple Self-training Supervised-pretraining

Fig. 6: Visualizations of discriminability scores in the encoder on COCO val images.

Random initialization DETReg DETReg+ Pseudo-box Simple Self-training Supervised-pretraining

Fig. 7: Visualizations of deformable cross-attention based on the last Transformer decoder layer on COCO val images.

images due to the conditioning on depth maps. This char-
acteristic allows us to use COCO ground-truth data to su-
pervise the pretraining process when using synthetic images
generated by ControlNet. Additionally, we also explore the
Simple Self-training approach on the synthetic data by pre-
training with pseudo-box and pseudo-class predictions that
are generated by trained COCO detectors. The process in-
volves pre-training the H-Deformable-DETR model with
synthetic images for 3 epochs, followed by fine-tuning on
COCO or PASCAL VOC benchmarks for 12 epochs. The
results of this evaluation are presented in Table 10. Inter-
estingly, pre-training with the synthetic dataset generated
based on COCO demonstrates comparable improvements
to pre-training with Objects365 real data using the Simple
Self-training scheme. This outcome indicates that text-to-

image synthesis is an effective method for scaling up the
original dataset for pre-training. Furthermore, the results on
the PASCAL VOC benchmark showcase the generalization
ability of pre-training with synthetic data generated based
on COCO.

Table 11 shows the results of pre-training with the syn-
thetic data generated based on Objects365 by first caption-
ing Objects365 image with LLaVA and then synthesizing
new images from the caption. They are not as good as pre-
training with COCO-based synthetic data on both down-
stream benchmarks.

5 Conclusion

We investigate the effectiveness of DETReg, a representa-
tive self-supervised pre-training approach for DETR, across
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three distinct DETR architectures. Our findings, unfortu-
nately, do not reveal any performance enhancements of DE-
TReg in recent architectures, thereby challenging the valid-
ity of previous conclusions. In response, we reevaluate cru-
cial design aspects, including pre-training targets for local-
ization and classification. As a result of this analysis, we in-
troduce several impactful enhancements and a Simple Self-
training scheme that significantly boosts performance across
strong DETR architectures. Additionally, we leverage the
powerful text-to-image generative models to construct syn-
thetic datasets for pre-training purposes. Remarkably, our
approach yields improvements on par with the achievements
of pre-training with Objects365. Moving forward, we plan
to extend DETR pre-training to encompass a broader spec-
trum of vision tasks, such as instance segmentation and pose
estimation. We hope our work can stimulate the research
community to reassess the actual capacity of existing self-
supervised pre-training methods when employed in the con-
text of strong DETR models and advance the progress on
this challenging task.
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Original images COCO captions
+ ControlNet

LLaVA captions
+ ControlNet

COCO captions
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Fig. 8: Examples of synthetic images using different captions and generative models. The original images are sampled from COCO train set.
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